
www.manaraa.com

Projection-type Score Tests for Subsets of Parameters 

Saraswata Chaudhuri 

A dissertation submitted in partial fulfillment of 
the requirements for the degree of 

Doctor of Philosophy 

University of Washington 

2008 

Program Authorized to Offer Degree: Economics 



www.manaraa.com

UMI Number: 3318168 

Copyright 2008 by 

Chaudhuri, Saraswata 

All rights reserved. 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3318168 

Copyright 2008 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

©Copyright 2008 
Saras wata Chaudhuri 



www.manaraa.com

University of Washington 
Graduate School 

This is to certify that I have examined this copy of a doctoral dissertation by 

Saraswata Chaudhuri 

and have found that it is complete and satisfactory in all respects, 
and that any and all revisions required by the final 

examining committee have been made. 

Co-Chairs of the Supervisory Co 

\<-\ tMwtLu^ 

Reading Committee: 

\C\\X^e^v^\ IA-^ 

Thomas Richardson 

Richard Startz 



www.manaraa.com

In presenting this dissertation in partial fulfillment of the requirements for the 
doctoral degree at the University of Washington, I agree that the Library shall 
make its copies freely available for inspection. I further agree that extensive 
copying of this dissertation is allowable only for scholarly purposes, consistent 
with "fair use" as prescribed in the U.S. Copyright Law. Requests for copying or 
reproduction of this dissertation may be referred to Proquest Information and 
Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, 
to whom the author has granted "the right to reproduce and sell (a) copies of 
the manuscript in microform and/or (b) printed copies of the manuscript made 
from microform." 

Signature 

Date_ OC J J3 / 16T>g . 



www.manaraa.com

University of Washington 

Abstract 
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Professor Eric Zivot 
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Professor Thomas Richardson 
Department of Statistics 

In this thesis we introduce a new projection-type score test for subsets of pa

rameters. Although the new test is based on the projection principle, it is 

generally less conservative than the usual projection-type tests. In particular, 

we show that the new test is asymptotically equivalent to the locally optimal 

(usual) score test. We also show that while the (usual) score test may over-reject 

the true value of the parameters of interest when the nuisance parameters are 

not identified; the new test, by virtue of projection, can be useful in guarding 

against uncontrolled over-rejection. We demonstrate the practical usefulness 

of the new test in the context of inference on subsets of structural coefficients 

in linear Instrumental Variables regressions. 
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Chapter 1 

INTRODUCTION 

In this thesis we are concerned with the problem of asymptotic inference on 

subsets of parameters based on the score statistic. We motivate the problem, 

review the literature and present a non-technical discussion of our contribution 

in this introductory chapter. A technical discussion along with examples of our 

proposed method of inference is presented in the subsequent chapters. 

Almost always, only specific parameters within a larger model are the ob

jects of primary interest. For example, a common interest in economics is to 

estimate the return to schooling from a wage equation of the form 

Inwage = a + (3 x educ + 7 x ControlVars + Model Errors (1.1) 

where educ and Inwage denote respectively years of schooling and logarithm of 

wages [see, for example, Griliches (1977), Angrist and Krueger (1991), Black

burn and Neumark (1992), Card (1995)]. The coefficient f3 represents the rate 

of re turn to schooling and is often the parameter of primary interest. 

1.1 Common problems with the usual Wald-type inference 

The usual practice in such cases is to report a -/n-consistent point estimator (3 

along with the standard error. More informative is the practice of reporting the 

corresponding (1 — e)-level Wald-type confidence region given by 

{A :=(^A)!S rid-,)} (1.2) 
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where n denotes the number of observations, V denotes a consistent estimator 

of the asymptotic variance of \fn(j3 — (30) and x?(l — e) denotes the (1 — e)-th 

quantile of a (central) xl distribution. Such regions are called the Wald-type 

confidence regions because they can be obtained by inverting a size-e Wald test 

of the hypothesis H : ft = /30- The finite-sample properties of such regions 

depend on the quality of the first-order asymptotic approximation 

^(P-P) d 
V ^ ( 0 , 1 ) - (1-3) 
vV 

However, it is well known that in finite-sample, the Wald-type confidence 

regions are not invariant under (real) one-to-one transformations of the pa

rameters [see Gregory and Veall (1985)]. For example, (if 13 ^ 0) and if/33 is the 

parameter of interest then, in general, 

{*: ^ 1 ! S x?(1 - «)} , ̂  : «101 S x?(1 - «,} . 
A more serious drawback of the Wald-type confidence regions was high

lighted by Dufour (1997). To recognize the problem it may be helpful to re

strict our attention to the inference on f3 based on instrumental variables (IV). 

Suppose that the variable educ is correlated with the ModelErrors in (1.1) and 

one reports a Wald-type confidence region based on the IV estimator /3 using 

exogenous instruments that are, unfortunately, also uncorrelated with educ. 

Based on such exogenous but irrelevant instruments, the reduced forms corre

sponding to (1.1) with any value of the parameter (5 in the entire real line are 

observationally equivalent. Also the asymptotic approximation in (1.3) does 

not hold in this case [see, for example, Phillips (1989) and Staiger and Stock 

(1997)]. Here the Wald-type confidence region, which is always bounded by 

construction, is misleading in the sense that it tends to be spuriously precise 
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and, as a result, may not even possess any coverage probability. See Dufour 

(1997) for an analytical discussion of the phenomenon and Zivot et al. (1998) 

for simulation results showing the undesirable lack of coverage probability of 

Wald-type confidence regions. 

Dufour (1997) and Nelson and Startz (2007) discussed a broader set of mod

els where inference based on the Wald test can be problematic. While some of 

these problems are fundamental to the underlying models and not particularly 

to the Wald test, it has been shown recently that the score test and the likeli

hood ratio (LR) test can be used to salvage the problem of inference at least in 

the context of IV regressions. 

Since a major part of this thesis deals with IV regressions, we do not focus 

on the Wald-type inference in the rest of the paper. Inference based on the score 

test is often computationally more attractive and requires fewer assumptions 

than inference based on the LR test [see, for example, White (1982)]. More

over, as will be clear in the sequel, the score principle has certain advantages 

that allow us to design a new technique of inference for subsets of parameters, 

which is the main contribution of this thesis. Hence we restrict our attention 

to inference on subsets of parameters based on the score test. 

1.2 Inference based on the usual score test 

Moving to a more general model [than (1.1)], let us denote the parameter(s) of 

interest by #i and the nuisance parameter(s) by $2. We follow this notation in 

the rest of the thesis. 

Provided that the method of inference allows for a score function, the usual 

score test rejects hypotheses of the form Hi : Oi = 6*i for large values of the 

score statistic evaluated under the null hypothesis. For example, consider like

lihood based inference of a correctly specified model under standard regularity 

conditions. Let l(9i,92) be the sum of the log likelihood function of n obser-
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vations, vV(0i,02) be the first partial derivative of 1(61,62) with respect to 6if 

and Xy(01,02) be a consistent estimator of the (i, j ')-th block of the partitioned 

information matrix for i , j = 1,2. Then the score statistic for the hypothesis 

H\\0\ = 0,i can be defined as 

-Ri(0*i,02(0*i)) = — Vi.2/(0*i, 02(0*i)) ^11.2(^*11^2(0*1)) Vi.2/(0*i, 02(0*i)) (1.4) 

w h e r e 

Vl.2Z(01,02) = V1/(01,02)-J12(01,02)X2~21(^1^2)V2Z(01,02) 

^11.2(01,02) = 2Tll(01,02) —^12(01,02)^22 (01, 02)^21 (01, 02)-

\ Vi.2/(0i, 02) is an estimator of the population efficient score function for Q\, i.e., 

the part of the score for 6\ orthogonal to the space spanned by the score for 

02. Following van der Vaart (1998) we refer to Vi.2/(0i, 02) (and similar terms 

to be introduced later) as the efficient score for Ox.1 If the true value of 02, 

say 002, is known a priori, one can set 02(0*i) = 0o2; although then it is more 

efficient to define t h e score s ta t i s t ic as ^ [ViZ(0*i,0O2)]'Xi~1
1(0*i,0o2) [ViZ(0*i, #02)]-

However, knowing 0O2 is unlikely, and in practice one usually sets 02(0*i) to some 

estimator of 02 restricted by the null hypothesis Hi : 6\ = 0„!. Rao's score test 

uses the restricted maximum likelihood estimator of 02 [see Rao (1948)], and 

Neyman's C(a) test allows for any ^ - c o n s i s t e n t estimator of 02 [see Neyman 

(1959)]. 

When the null hypothesis is true, i?i(0*i,02(0*i)) converges to a central x2 

distribution (with degrees of freedom equal to the dimension of 0i) under stan-

xIt should be noted that Cox and Hinkley (1974) (page 107) referred to Vi/(0i,02) as the 
efficient score for 0\ and subsequently in the literature Vi.2^1, #2) has been often referred 
to as the effective score for 9\. We hope that our choice of terminology will not be unduly 
burdensome to readers. 
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dard regularity conditions; and hence quantiles of the x2 distribution can be 

used as the critical values for the score test. Variants of (1.4) have been widely 

used in the literature under more general conditions — for example, Newey 

and West (1987) introduced the score (Lagrange Multiplier) test in the context 

of Generalized Method of Moments (GMM), while Boos (1992) introduced the 

generalized score test in the context of General Estimating Equations (GEE). 

In the next chapter we consider the score-principle for methods of infer

ence based on the general extremum estimation framework. This framework 

is broad in its scope and includes inference based on widely used methods such 

as M, GEE and GMM estimations as special cases. 

For any such method, let Ri(8*1,82(6*1)) denote the score statistic (modi

fied accordingly) for testing Hi : 8X = 8*1 and let Ri(90i,802) asymptotically 

follow xti where z/; and d0i are respectively the dimension and the true value 

of the parameters 0* for i = 1,2. In a correctly specified model and under stan

dard regularity conditions, 82(8*1) is -y/n-consistent for 6>02 and Ri(8*i,82(6*1)) i s 

asymptotically equivalent to i?i(0*i,0o2) for local 6*i. The usual score test re

jects the null hypothesis at level e if Ri(6*i, 82(6*1)) > x ^ ( l - e). Therefore, a 

(1 — e)-level confidence region obtained by inverting the score test is given by 

{8*i\Ri(6*iM^)) <xlx(
l ' ^)} • 

While optimality properties of tests are in general complex when v± > \; 

under certain assumptions, it can be shown that when v\ — 1, the score test de

scribed above is a local normal approximation to the Uniformly Most Powerful 

Unbiased test for the hypothesis Hi : 81 = 0*i against two-sided alternatives. 

Similar local optimality statements can be made on the confidence region ob

tained by inverting the score test. 

However, it is important to note tha t the properties of the usual score test 



www.manaraa.com

6 

depend crucially on the assumption that $2 (#01) is a y'n-consistent estimator of 

the nuisance parameter 92. When this assumption is not satisfied, the proper

ties of the score test are not well known and, depending on the structure of the 

model, this may lead to over or under-rejection of the true value of the param

eters of interest, i.e. the test for H1 : 9\ = 9*\ can be over-sized or under-sized 

(in other words, upward or downward size-distorted). 

In the paradigm of classical hypothesis testing, while an under-rejection 

of the true value of the parameters is associated only with the loss in power, 

over-rejection of the true value is more undesirable. For example, in a series of 

papers, Dufour and his co-authors [Dufour (1997), Dufour and Jasiak (2001), 

Dufour and Taamouti (2005b,a)] strongly recommended the use of projection-

type tests that rule out the upward size-distortion at the cost of considerable 

loss in power. 

The USSIV {unbiased split-sample TV) test considered by Chaudhuri et al. 

(2007) is an example of a test that over-rejects the true value of the parameters 

of interest due to the inconsistent estimation of the nuisance parameters. We 

briefly discuss their results in the next chapter of this thesis. 

Inconsistent estimation of the nuisance parameters can, in principle, affect 

the size of the score test in different ways and a general discussion along that 

line is beyond the scope of this thesis. However, as mentioned earlier, if one can 

ensure that the score statistic i?i(^oi, #02) converges to a central x^ distribution 

when evaluated at the true value of the parameters, then we show that it is 

possible to correct for the uncontrolled over rejection of the true value of the 

parameters under certain conditions. 

We achieve this through a new method of projection-type inference based on 

the score statistic Ri(9i,92). We also show that the new method of projection 

introduced in the next section is generally less conservative than the usual 

method of projection recommended by Dufour and his co-authors. 
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The main idea behind this new method of projection follows from Robins 

(2004), and we gratefully acknowledge the help of Jamie Robins in the concep

tion of this thesis. 

The asymptotic convergence of i?i(0oi,#o2) to a known distribution is the 

single-most important requirement for the validity of the results based the 

new method of projection. Although we restrict our attention to the usual x2 

approximation of the limiting distribution, all that is actually necessary is that 

^i(#oi)#02) is (asymptotically) pivotal. A set of sufficient conditions required 

for the validity of our results in the context of extremum estimation is listed 

under Assumption S in the next chapter. Loosely speaking and going back to 

the context of maximum likelihood estimation, if 2n.2(#0i, #02) is positive defi-
—'— P 

nite and if for i, j = 1,2, lij(90) —> Zy(#0), then the new method of projection 

can be applied to solve the problem of uncontrolled over-rejection.2 Moreover, 

we also show that if it is possible to obtain a y'n-consistent confidence region 

for the nuisance parameters #2 then the new method of projection, unlike the 

usual method, does not entail any loss in asymptotic power. 

1.3 A new method of projection-type score test 

Suppose that C2(l — C> #*i) is a uniform asymptotic (1 — C) confidence region for 

82 when the null hypothesis Hi : 6\ = #*i is true. The new method of projection-

type score test rejects the null hypothesis if 

(i) either C2(l - C M = 0, 

(ii) or inf Rl(6*1,82)>xl1(±-e). 
02eC2(i-CAi) 

2We are unable to identify the general characteristics of models for which such conditions 
will be satisfied. This is because under the usual smoothness conditions, often the prop
erties tha t make 02(0oi) inconsistent for 602 also lead to Zy(0Oi,0o2) being inconsistent for 
Zy(#oi,0o2) for i,j = 1,2. Identifying the general characteristics of such models is a subject 
of future research. Some progress in tha t direction has been achieved in the pioneering work 
of Nelson and Startz (2007). 
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This can be seen as a two-step procedure: in the first step we construct a 

(restricted) confidence region for the nuisance parameters such that the region 

has correct coverage probability 1 - ( under the null hypothesis; and in the 

second step we reject the null hypothesis if the infimum (with respect to 92 

inside the confidence region) of the statistic Ri(0*i, 02) is larger than the x ^ ( l ~ 

e) critical value. As mentioned before, this method is motivated from Theorem 

5.1 in Robins (2004). Similar techniques of hypothesis testing in the presence 

of nuisance parameters were also suggested by Berger and Boos (1994) and 

Silvapulle (1996). 

While an empty confidence region C2(l — (,0*i) m a y seem counterintuitive; 

it is possible to obtain a null set when the confidence region is not obtained by 

inverting a Wald test. Basically this means that the underlying test rejects all 

possible values of the nuisance parameters 62. In Chapter 3 we will see that 

such confidence regions can occur with distinctly positive probability and hence 

it is important to take the empty set into account. Notwithstanding, under the 

null hypothesis Hi : 9\ = 0*u the region C2(l - C, #*i) contains the true value 902 

with asymptotic probability at least 1 — (. Hence it follows from Bonferroni-type 

arguments that the asymptotic size of the new method of projection-type score 

test cannot ever exceed e + (. 

Furthermore, under standard regularity conditions and conditional on C2(l— 

C, 0*i) ^ 0, any point belonging to C2(l — C, #*i) is i/^-consistent for 92. Hence for 

i/n-local 0*i, it can be shown that mig2eC2(i-c,e,i) R\{0*\, #2) = Ri{0*\, 6*02) + op(l). 

Thus, conditional on the first-stage confidence region being non-empty, it is pos

sible to show that the new method of projection-type score test is asymptotically 

equivalent to the usual score test against i/n-local alternatives. 

When the standard regularity conditions are not satisfied, the usual tech

niques of asymptotic inference applied to finite-samples can be misleading. In 

particular, as we have noted before, if violation of the regularity conditions 
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leads to inconsistent estimation of the nuisance parameters 82, then the usual 

score test may over-reject the true value of the parameters 6\. The new method 

of projection-type score test can be useful in guarding against the uncontrolled 

over-rejection under some of these non-regular cases; while enjoying the desir

able local optimality properties of the usual score test (and hence the Wald and 

LR tests) whenever the standard regularity conditions are satisfied. 

1.4 Weak instruments and weak identification - Violation of regular
ity conditions and methods of inference for subsets of parameters 

In practice, (asymptotic) violation of the standard regularity conditions is not 

rare; the much studied "weak instrument" problem serves as a common exam

ple [see for example Nelson and Startz (1990a,b), Bound et al. (1995), Staiger 

and Stock (1997)]. If the correlations between an endogenous regressor and 

the corresponding instruments in a linear IV model are small, and if the level 

of endogeneity is high, it usually takes an unfeasibly large sample size for the 

standard asymptotic techniques to be valid; and in finite-samples the Wald, 

LR and score tests tend to be over-sized. Furthermore, the usual asymptotics 

degenerate when the actual correlations are zero. 

To address this problem, "weak instrument" asymptotics were introduced 

by Staiger and Stock (1997), in which the correlations between the endogenous 

regressors and the corresponding instruments approach zero with increasing 

sample size (at rate y/n). In this setting, the two-stage least squares (TSLS) and 

the limited information maximum likelihood (LIML) estimators of the struc

tural coefficients, i.e. 6 = (6[, 9'2)', are inconsistent and the usual Wald, LR and 

score tests for testing the parameter vector 6 are over-sized [also see Wang and 

Zivot (1998) and Zivot et al. (1998)]. 

Alternative techniques for jointly testing all the structural coefficients have 

now been proposed, which are robust (in terms of size) to the presence of 
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weak instruments. For example, the Anderson-Rubin (AH) test was recom

mended by Dufour (1997) and Staiger and Stock (1997), the K-test was pro

posed by Kleibergen (2002) and Moreira (2003) and the Conditional likelihood 

ratio (CLR) test was proposed by Moreira (2003). 

Returning to the problem of testing subsets of structural coefficients, i.e. 

Hi : 0i = 0*i, one can always use the projection techniques based on these tests 

[see Dufour and Taamouti (2005b,a) and Zivot et al. (2006)]. However, such 

projection-type tests can be conservative. We show that our new method of 

projection is, in general, less conservative than the usual projection-type tests. 

As an alternative to the projection-type tests, Kleibergen (2004) showed that 

if the instruments are strong for the nuisance parameters 02, one can replace 02 

with their LIML estimators restricted by the null hypothesis, and use the K and 

CLR tests (with proper adjustment for the degrees of freedom) to test the null 

hypothesis Hx : 0X = 9^. Stock and Wright (2000) and Zivot et al. (2006) sug

gested similar modifications to the AR test using the restricted TSLS or LIML 

estimators. In a recent working paper Kleibergen (2007) also showed that when 

the instruments are weak for the nuisance parameters 02, the plug-in princi

ple applied to the AR, K and CLR tests leads to tests that are asymptotically 

conservative. 

Stock and Wright (2000) generalized the idea of weak instruments in a lin

ear IV regression to "weak moment conditions" in a GMM framework. The 

weak moment conditions lead to "weak identification" of the parameters and, 

as expected, the GMM estimators of the parameters are inconsistent and the 

usual Wald, LR and score tests for these parameters are unreliable. 

Kleibergen (2005) extended his K-test to the GMM setup and also showed 

that when the nuisance parameters 02 ore strongly identified, the K-test can 

be applied for testing Hi : $i = 0*i using the K-statistic evaluated at the null 

(i.e. plugging in the Continuous Updating estimator of 02 restricted by the null 
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hypothesis) and adjusting the degrees of freedom accordingly. Similar proce

dures can be applied to extend the CLR test to the GMM framework when the 

nuisance parameters are strongly identified. 

The K-statistic is, in principle, a score statistic. Hence the new method of 

projection can be readily applied to the K-statistic. Under the weak identi

fication framework, we show that our projection-type test statistic (based on 

the K-principle) is asymptotically equivalent to Kleibergen's K-statistic for y/n-

local alternatives whenever the nuisance parameters 62 are strongly identified. 

Furthermore, because in this particular setup it is always (i.e. even for 

unidentified 92) possible to construct asymptotically valid confidence sets for 

the nuisance parameters under the null, we show that the size of the new 

method of projection-type test can be bounded from above by any pre-specified 

value.3 

We recommend the use of the new method of projection-type score tests in 

cases where inconsistent estimation of the nuisance parameters leads to the 

standard tests being over-sized. While the usual projection techniques can also 

be used in these cases to guard against the over-rejection of the true value of the 

parameters of interest, the new method of projection-type tests can be shown 

to be more powerful than the usual projection-type tests under quite general 

conditions. 

3In an e-mail exchange, Frank Kleibergen recently told us that he and Sophocles Mavroeidis 
are jointly working on showing that the plug-in technique applied to the S, K and GMM-
M (CLR) tests leads to conservative tests whenever the nuisance parameters are weakly 
identified. This opens a new possibility for improvement when the nuisance parameters 
are weakly identified: a judicious choice of C may increase the asymptotic relative efficiency 
(ARE) of the new method of projection-type test with respect to the K-test. We plan to pursue 
this in the future. 
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1.5 Notations 

We use the following notations in the rest of the thesis. If A = [Ai,..., Abc] is an 

a x be matrix, A+ is its unique Moore-Penrose inverse, vec(A) := [A[,... ,A'bc}', 

devecc(A') := [{Au ..., Ac)',..., (A{b„1)c+U ..., Abc)'] and \\A\\ := y/trace(A'A). If 

A is full column rank then P(A) = A{A'A)-1A' and N{A) = Ia - P(A) where Ia 

is the a x a identity matrix. If A is a symmetric positive semi-definite matrix 
1 1 1 ' 

then Az is the lower-triangular Cholesky factor of A such that A = A^A^ . If 

A = ((Aij))itj=ii2 is such that the diagonal blocks An and A22 are non-singular 

then Au.j = Au — AijAj^Aji denotes the Schur complement of Ajj for i ^ j = 1,2. 

Lastly, we use the acronym w.p.a.l for "with probability approaching one". 
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Chapter 2 

THE NEW PROJECTION-TYPE SCORE TEST IN 
EXTREMUM ESTIMATIONS 

Consider a random sample z = (zl7... ,zn)' € S drawn from the unknown 

distribution Pg0 e {PQ : 6>„xl e 6 } . Let the true parameter value 60 - (^01^02)' 

be such tha t 90i e interior(Gj) where 0j is a compact (i/j- dimensional) subset 

of R^ for i — 1,2. The parameter space 0 = 0X x 0 2 is a compact subset of R" 

where v = v\ + i/2. 

Define an extremum estimator of # based on the random sample z as 

6n = avgm&xQn(z,6) (2.1) 

where Qn(z,9) : 5 x 6 H 1 is any criterion function measurable in z for 

all 0 e O. The definition of the extremum estimator in (2.1) covers the M-

estimators such as those obtained by maximum likelihood, quasi-maximum 

likelihood, least squares, etc., and the Minimum Distance estimators such as 

the GMM estimator. GMM estimation has received much attention in the 

last two decades and offers an interesting application of the new method of 

projection-type score test. Hence we discuss it separately in the next chapter 

under more specific assumptions. The general theory discussed in this chapter 

is probably better suited for M-estimators.1 

For simplicity, we base the discussion of the new projection-type score test 

xOf course any M-estimator, viewed as a solution of a first order condition (i.e. what van der 
Vaart (1998) calls a Z-estimator), can be interpreted as a GMM estimator [page 2116, Newey 
and McFadden (1994)]. 
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for the null hypothesis Hi : 9i — 9*i on a set of "high-level" assumptions sum

marized under Assumption A [see chapter 4, Amemiya (1985) for details]. 

Assumption A: 

A l . Q„{9) = Qn(z,8) is twice-continuously differentiable and n~lQn(9) con

verges uniformly to a non-stochastic function Q(0) which has a unique 

maximum at 90. 

A2. n-1^iQn(80) - i *i where ViQ„(0) := dQn{Z,9)jd9i for i = 1,2. Also 

[fy'i, \&2] ~ iV(0„, B(90)) for some finite, positive definite matrix B(9Q) where 

B{9) = (Bij(9))ij=12 is continuous in an open neighborhood of 90. 

A3. n~lVeeQn{Q) converges uniformly in probability to a finite, continuous, 

negative definite matrix A(9) = (Aij(9))i.12 where the matrix VeeQn(9) = 

{VijQn(0))iJ=1j and VyQn(0) := d(ViQn(9))'/d9j. 

We use A = A(80) and 5 = B(90) f ° r notational convenience. Following As

sumption A3, we use A{9) = n~lV eeQn{9) as the estimator of A{9). We refer 

to B{9) as some consistent estimator for B{9) without explicitly mentioning its 

functional form. 

Before introducing the new projection-type score test in this context, we 

briefly review the usual score test for H\ :9\ = 0*i. 

Denoting 6>» = (#*i,^2(#*i))', the score statistic for testing Hi : 6*i = 9*i is 

defined as 

Ri0*) —7=Vi.2<3n(^*) Gi(9*)B{9*)G'i(9, 1 + 
—F=Vl.2<2n(#*) (2.2) 

where 0n2(0*i) - arg max Q„(0»i, #2), (2.3) 

Vi.2Q„W = V!QB((9) -Au{6)A£{e)V2Qn(6) and Gi(0) = [ /„ , , - l 1 2 (0) l+(0)] . 

The score test rejects the null hypothesis Hi : 9\ = 0*i at level e if Ri(0*) > 
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xl^l — e). An alternative form of the score statistic, motivated by the Lagrange 

Multiplier principle of Aitchison and Silvey (1958) and Silvey (1959), is given 

by 

E?\e.) -7=ViQ„(0„) Gi(0,)i?(0,,)G,
1(0,)1 + -7=ViQn(6 [*) (2.4) 

Whi le i t is obvious t h a t bo th forms of t h e score s ta t i s t i c a r e observat ional ly 

equivalent when the nuisance parameters are replaced by some 82 such that 

dQn(0*i,92)/d82 = 0; the score statistic in (2.2) has a major practical advan

tage: it allows 62 to be replaced by any y^-consistent estimator [see Lemma 

A.4(iii) in the Appendix]. This particular flexibility of the score statistic JRI(0») 

is later utilized in constructing the new projection-type score test. The asymp

totic validity of the alternative form of the score statistic in (2.4), however, is 

only maintained when the nuisance parameters are replaced by some 82 such 

that dQn{8t,1,92)/d92 — °p(l) [under Assumption A, the estimator #„2(#*i) in (2.3) 

satisfies this property w.p.a.l] and this can be computationally costly [see ex

ample 3.1 in Bera and Bilias (2001)]. In the rest of the paper, by "efficient score 

statistic", we will refer to a statistic similar to the one considered in (2.2) - i.e. 

a quadratic form of the estimated efficient score for 8\, which simultaneously 

admits interpretation both as Rao's score and Neyman's C(a) statistic. 

2.1 The new projection-type score test 

Suppose that it is possible to construct a confidence region C2(l — Ci #*i) f° r #2 

such that under the null hypothesis Hi : 8\ = 0*i, the region C2(l - C>0*i) n a s 

uniform asymptotic coverage probability (at least) 1—(. Denoting*?* = (9'^, 8'^)', 

2Denoting dQn(0)/dd by VeQn(0), the score statistic in (2.4) can be also alternatively written 

as Rf2&) = [^V8Q„(ft0]' [G0.)B(d,)G'(0.j\+ [^eQn&)], where G{0) = {G[(9), G'2}' 

for any arbitrary i ^ x ^ matrix G2, as long as V2<5„(#»!) = 0. We mention this form because, 
as we will see later, Kleibergen's K-statistic is defined in a similar spirit. 
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the new projection-type score test rejects the null hypothesis Hi : 81 — 6U if 

(i) either C 2 ( l - C , M = 0 

(ii) or mi9t2ec2(i-c0,i) Ri(Q*) > X^i1 ~ e)-

At this point we do not specify how the confidence region for the nuisance pa

rameters 62 is obtained in the first step. In the next chapter we discuss in 

detail some of the important advantages derived from a judicious choice of the 

first-stage confidence region. 

It is important to note that Assumption A does not include non-regular cases 

such as the instrumental variables regression with weak instruments. In such 

a non-regular case while it can still be possible to obtain a valid (though pos

sibly conservative) confidence region for the nuisance parameters, consistent 

point-estimation of the nuisance parameters (and the parameters of interest) 

may not be feasible [see, for example, Section 2.3]. Of course, if it is possible to 

obtain -^/n-consistent estimators for a subset of the nuisance parameters, then 

constructing the confidence region for those parameters is unnecessary. 

Theorem 2.1 

(i) Let C2(l - C, 0i) be such that l i m ^ o Pr6oi [802 G C2(l •- C, M ] > 1 - C- Then 

under Assumption A, 

lim Prdoi 
0»2eC2(i-CA>i) 

{C2(l-(,8ol) = 0}U{n _ i n f _ ^ i ( 0 o i , M > X ^ ( l - e ) } < C + e 

(ii) Let 6*\ = 8m + di/y/n G ©1 where di G R"1 is fixed. Let C2(l - (,8*1) be 

nonempty w.p.a.l and suppose that for any 8*2 G C2(l — C>#*i)> A/^11^2 ~ #0211 = 

Op(l). Then under Assumption A, 

lim Pr6oi 
n—too 

lim Pr6oi 

{ C 2 ( l - C , ^ i ) = 0 } U { inf i ? 1 ( ^ 1 , ^ 2 ) > X ' 1 ( l - e ) } 
t'«2€L2(l-C,C'«l) 

Ri(e.i,e02)>xll(i-e)] 
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Theorem 2.1 discusses the asymptotic properties of the the new projection-

type score test and is proved in the Appendix. It shows that the size of the new 

projection-type score test is always bounded from above by e + (, irrespective of 

the asymptotic length of the first-stage confidence region. Moreover, if w.p.a.l 

the confidence region £2(1 — C> #*i) is non-empty and the value of 02 where the 

infimum of the test statistic is attained within C2(l — C, 0*i) is V^-consistent for 

02, then Theorem 2.1 also shows that this test is asymptotically locally equiv

alent to the infeasible efficient score test, which rejects Hx : 9i — 9fi at level e 

if i?i(0*i, 002) > X^(l — e). The infeasible efficient score test uses the unknown 

true value of the nuisance parameters 02 and enjoys certain local optimality 

properties under standard regularity conditions. Often this asymptotic equiv

alence can be ensured by constructing the confidence region C2(l — C, #*i) such 

that it belongs to the y^-neighborhood of the true value 602, as is mentioned 

in the statement of the theorem. We describe the process of the construction of 

such confidence regions in the next chapter. 

Finally we note that, under the conditions of the theorem, the local asymp

totic equivalence of the new projection-type score test extends to the usual score 

test (mentioned before in (2.2)) and the Wald test, which rejects Hi: 61 = 0»i at 

level e if Wi(0*i) > x ^ ( l - e) where 

J W . i ) = n(enl - 0*1)'fiu(0n)(0ni - 0,i) 

and ttn (0) is the top-left vxxui block of fi(0) = ((fty(0)))ij=i,2 == A+{9n)B(en)A
+(6n) 

[see Lemma A.4 in the Appendix].3 

Readers are referred to Gourieroux et al. (1983) and Newey and McFadden 

(1994) for other forms of the Wald and score tests. We do not consider the LR 

3The form of the Wald statistic and the score statistic can be simplified if it is known a 
priori that A(00) = —B(60) [see White (1982)]. The usual score test and the Wald test are 
asymptotically equivalent to the LR test against v/n-local alternatives when A(90) = —B(9o). 
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test here because the asymptotic x2 distribution of the test statistic requires an 

additional assumption that A = —B.4 We also do not consider the Hausman-

type tests because these tests are locally optimal for a different hypothesis, 

-^•221^2i( î—^*i) = 0, whose equivalence with the hypothesis under consideration 

depends on the stringent condition that v2 < v\ and A21 is full row rank [see 

Holly (1982)]. 

It should, however, be mentioned that like the usual score test, the new 

projection-type score test is also not particularly suited for cases where the 

nuisance parameters are absent under the hypothesis being tested [see Davies 

(1977, 1987)]. For example, consider a regression model with an additive non-

linearity, which takes the form 5 

Vt = #i/(02, a;*) + ut, where ut ~ (iid)N(0,1). 

Under the null hypothesis Hi : 0\ = 0, the nuisance parameters 82 are absent; 

meaning that any valid confidence region for 82, obtained under the null hy

pothesis, should be identical to the entire parameter space for 62. Hence the 

new projection-type test reduces to comparing the inf02ee2 Ri{0,92) to the x\ 

critical value. To apply the usual score test in such cases, it is important to 

consider the restricted estimator of 82 as a stochastic process of 9i, treating it 

simply as the argmax02£e2 <3n(0, #2) leaves room for implementational ambigu

ity. The usual score test and the new projection-type test have poor power at 

the point of unidentification; in fact, the latter provides a lower bound to the 

asymptotic power of the usual score test. Of course, in this case one can fol-

4Under the null hypothesis the LR statistic, in general, tends to a weighted sum of x2 vari
ables with unknown weights [see Foutz and Srivastava (1977) and Kent (1982)]. 

5See Hansen (1996) for examples of the regression form: y\ — xt-y + 9\ft{02, zt)+ut and cases 
where it is of interest to test if the nonlinear term f(02, zi) enters the regression or not; i.e., 
to test Hi : 61 = 0. See Nelson and Startz (2007) for more examples. 
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low Conniffe (2001) and replace 92 by its unrestricted estimator in the score 

statistic i?i(0, 92) denned in (2.2) and obtain better power as long as the t rue 

value #oi 7̂  0. Note that the alternative forms of the score statistic do not allow 

such modification. This technique can be extended to the new projection-type 

score test by constructing an unrestricted first-stage confidence region for the 

nuisance parameters 92. 

2.2 Sufficient conditions for the validity of the new test 

Finally, it is important to note that the new method of projection offers wide 

flexibility in designing a test for the sub-vector 9\. Provided that it is possible to 

obtain a valid first-stage confidence region for the nuisance parameters 92, the 

only requirement in designing a valid projection-type (score) test for the null 

hypothesis Hi : 9t = 9*i is a statistic which is (asymptotically) pivotal under 

the null hypothesis. Although for local optimality properties it is necessary 

that such a (pivotal) statistic be based on the efficient score for 9\\ a valid (not 

necessarily optimal) test for H\ : 6X = 0*i can be based on a wider choice of 

(pivotal) statistic. For example, any functional /„ : 5 x 0 H R" satisfying the 

following set of sufficient conditions, summarized under Assumption S, can be 

used to construct such a (pivotal) statistic that can be used in designing the 

new projection-type score test. 

Assumption S: 

5 1 . fn{z,6) = Hn(z,9)hn(z,9) where Hn — ((Hn^j))) is such that the (i,j)-th 

element i?n(t,j) : < S x 6 « K for i = 1 , . . . , u, j = 1 , . . . , k and /in : 5 x 0 H R* 

for some finite positive integer k. 

52 . hn(z,9) => f(0) ~ N{n{6),E{6)) such that /x(0o) = 0 and S(0O) is finite.6 

6"=>" is used to denote weak convergence to the Gaussian stochastic process £, indexed by 9 
[see Andrews (1994)]. 
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Hn(z, d0) and hn(z, 90) are asymptotically uncorrelated. 

S3 . Vn(9) = Hn(z,9)E(9)H'n(z,9) is such that lim^oo Vn{9) is finite, continuous 

and positive definite at 90 w.p.a.l. Vn(9) — Hn(z,9)E(9)H^(z,9) such that 

\\Vn(9) - K(#)| | = op(l) in some open neighborhood of 90. 

Assumption A implies Assumption S and hence the following discussion 

based on Assumption S is also applicable to inference based Assumption A. 

Using Assumption S, an asymptotically size-e test for the hypothesis H* : 

9 — 9* on the full parameter vector can be designed by rejecting the hypothesis 

when R(9*) > x^(l - e) where 

R(9.) = f'n(z, 9*)V+(9*)fn(z, 9*)1 (2.5) 

If, in addition, plim„^00Hn(6'*)/Lt(^) ^ 0 w.p.a.l for 9* ^ 90, then this size-e test 

will be asymptotically unbiased. However, evaluating the loss in ARE with 

respect to the usual score test needs more specific assumptions. 

The same principle can also be used to construct an asymptotically pivotal 

statistic for testing the hypothesis Hi : 9\ — 9rX on the sub-vector 9\. In particu

lar, if we can partition Hn and Vn such that H'n = [H'n^, H'n^\ where Hn[n is */» x k 

for i = 1,2 and Vn = ((K[ij]))i,j=i,2, then an asymptotically pivotal statistic for 

the new projection-type score test can be constructed as 

Ri(0) = U4z^n[n.2^)fn[i.2]{z,9) where (2.6) 

fn[1.2](z,9) = ^1 ](z,0)/ l n(z,0)-y„ [ 1 2 ](0)i>n[2 2 ](e)ifn [ 2 ](^0)/ l n(z^) (2.7) 

As before, a size-e test for the hypothesis Hi : 9± = 0*i on the sub-vector 9i can 

be designed by rejecting Hi : 9X = 0,i when i?i(0*i,0o2) > X^(l - e)- This test 

7The description of the statistic R{Q*) fits the LM (K) statistic proposed by Kleibergen (2002) 
and Moreira (2003). 



www.manaraa.com

21 

will be asymptotically unbiased if plimn_>ooifn[1](0»i, #02)M#*i, 0̂2) 7̂  0 w.p.a.l for 

8*1 ¥" 0oi • However, #02 is unlikely to be known, and the test remains valid if 92 

is replaced by any ^-consistent estimator.8 When it is only possible to obtain 

a valid confidence region for 02 but not a consistent estimator, then the new 

method of projection-type score test based on the statistic i?i(6*1,6-2) in (2.6), 

which, is asymptotically pivotal at 9 = do, can be used for testing H\\Q\ = d*\. 

In the following section we present a simple application of this new projection-

type score test in the context of split-sample IV regression. The description is 

rather elaborate and is hoped to be helpful in explaining the methodology. 

2.3 Application to a split-sample linear IV regression 

Consider the linear IV model 

y = Xi#0i + X2602 + u 

X2 = ZU2 + 772 

where y is the dependent variable, X = [X\, X2] are the endogenous regres-

sors, u, rj = [??i, 772] are the unobserved correlated structural errors and Z is the 

8It is worthwhile to observe that if 0n2(0*i) is a root of Hn[2](8*i, #2)/in(0*i, ^2) = 0„2xi, then, 
using (2.5) and denning 0* = (0'tl,6'n2{0*i))', other statistics for H\ : 8X = 0»i can also be 
constructed as: 

Rf%) = h^J^Kn^^V^n.^Hnli^^hn^l) (2.8) 

Rf2{k) = R{h) (2-9) 

where R1(8t) °= Rf{8») °= R?t2(9*). (2.10) 

The first term in (2.10) is analogous to what we have throughout referred to as the efficient 
score statistic; the second term is analogous to the usual form of the score statistic derived 
from the LM principle; and the last term is analogous to the form used by Kleibergen (2004, 
2005) to define the K statistic for testing Hi : 6\ = 0»i. Lastly, note that all the three forms of 
the statistic are robust to the scaling of the term Hn(z, 8) by nonsingular matrices. This allows 
for different orders of magnitude (in a possibly probabilistic sense) of Hn^ (z, 8) and ifn[2] (z, 8). 
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matrix of non-stochastic instruments.9 Let the dimensions of 04 and 11, be re

spectively i/jXl and k x v{ for % = 1,2 where ^ = z/i + v2 and z^, ẑ 2 and k are fixed 

and finite integers. Assume that the order condition k > v is satisfied. We do 

not, however, impose the restriction of full column rank on n = [III, n2] . 

Suppose that there are n i.i.d. observations on y, X and Z, and assume that 

for t = 1 , . . . , n the structural errors 

(ut, mt, mt) ~ ' N(0, E) where S = 

/ 1 Pul Pu2 \ 

Plu 1 Pl2 

\ P2« P21 i y 

is unknown. (2.12) 

Split the sample randomly into two sub-samples denoted by a and b — the first 

one containing na observations and the second one containing nb = n — na obser

vations such that min{na, nb} > k. Let y^, X^ and Z^ represent the matrices 

containing the n, observations in the ith sub-sample (i = a, b) where the obser

vations are stacked in rows. 

Define X^) = Z^Ii^ and U(j) = (Z'^Z^))"1
 Z'^XQ) for i,j = a,b. We point 

out that the USSIV estimator of 9, proposed by Angrist and Krueger (1995), 

can alternatively be defined as an extremum estimator that maximizes the 

objective function 

Qn(o) = -\ (y(a) - x{a)e)'x{ab) (x'^x^y1 x[ab) (y{a) - x{a)e) (2.13) 

with respect to 9 provided X',sX^ab) and is nonsingular. The objective function 

focuses just on the structural parameters #1 and 92 by partialling out the other 

parameters n and S. In this model, II can be estimated consistently as long 

9We impose this rather restrictive assumption on the instruments just for the purpose of 
exposition. The results in this section are valid with instruments that are independent, ex
ogenous or predetermined with respect to the structural errors [see Chaudhuri et al. (2007)]. 
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as \\m.n~lZ'Z is positive definite and £ can be estimated consistently in any 

-v/«-neighborhood of II and 90. The objective function is twice continuously dif-

ferentiable with respect to 9. The gradients and the Hessian are respectively 

V9Qn{9) = X{ab) (y{a) - X{a)9) giving V<QB(0) = X[ab)i (y{a) - X{a)9) for t = 1,2; 

VeoQn(9) = -X[ab)X{a) giving vyQ„(0) = -X[ab)iX(a)j for i,j = 1, 2. 

Assuming that na/n —» c where c is a constant e (0,1), it is instructive to see 

how Assumption A works in this example. Let us do it in reverse order starting 

with Assumption A3, which describes the curvature of the objective function. 

-VeeQn(Q) -^ -plim— n n 
ft' ZWZ(a)TT i ft' Z'^%a) 

= -dl 'TII = A, (2.14) 

if lining Z x̂Z(j) = T for i — a, b. The probability limit does not depend on 9 and 

hence is uniform in 9 and, further if T is positive definite and II is full column 

rank, then the probability limit is a negative definite matrix as required in A3. 

Now consider Assumption A2. Again, the same set of sufficient conditions, 

i.e. the convergence of n^ZLZ^ to a positive definite matrix T (for i = a,b) 

and the full column rank of II ensures that A2 holds because 

--V0Qn(9o) = A / ^ n ' ( 6 ) % ^ ± JV(0, dl'TII = B). (2.15) 

Finally, consider Assumption Al. The same set of conditions ensures that 

n 2n na 2n na y na J na 

na,Q 9y
x[ab)u(a) nau[a)Xiab) fX[a)X(ab)\ X{ab)X{a) 

In ° na 2n na y na J na 

^ -^(90 - 9)'U'TU(90 - 9) = Q(9) (2.16) 
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where Q(9) is a non-stochastic function of 9 attaining a unique maximum at 

9 — 90. Hence under the conditions that n^ZLZ^) converges to a positive 

definite matrix T (for i = a,b) and II is full column rank; the USSIV estimator 

#ussiv = [X'^X^J X[ab)y^a), (2.17) 

obtained by minimizing (2.13), satisfies Assumption A and all the results dis

cussed before in this chapter hold. Moreover, since (2.14) and (2.15) imply that 

A = —B one can also construct a LR test for testing the parameter vector 

9 or the sub-vector $i. However, it is obvious that under such standard cir

cumstances, the USSIV-framework is not useful because of the lost precision 

(information) due to sample-splitting. Inference based on the standard TSLS 

obtained by maximizing the objective function QlSLS(9) = (y - X9)'P(Z) (y - X9) 

is more efficient when Assumption A is satisfied. 

2.3.1 Why consider the USSIV-framework then? 

At the risk of repetition, note that the convergence results in (2.14) - (2.16) de

pend crucially on two conditions - the positive definiteness oflimn~1Z'Z(= T) 

and the full column rank of II. Combined together, they imply the requirement 

of positive definiteness of II'TII, the probability limit of (1/n times) the inner 

product of the projection of X on to the space spanned by the columns of Z, 

and hence is related to the relevance of the instruments Z for the endogenous 

regressors X. Intuitively this means that the space spanned by the projected 

endogenous regressors is ^-dimensional where v is the number of endogenous 

regressors, i.e., there is no multicollinearity among the columns of projected X. 

The condition related to the relevance of the instruments has received a lot 

of attention recently and is helpful in recognizing the usefulness of the USSIV-

framework. When II'TII is rank deficient, the standard asymptotics degenerate 
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and it is not possible to find consistent estimators for every element of 9 [see 

Phillips (1989)]. Because of the lack of uniform convergence in (2.14) - (2.16), 

when IT'Tn is nearly rank deficient, it may take an unfeasibly large number of 

observations for the standard asymptotics (under Assumption A) to provide a 

good approximation of the finite-sample properties of the inference [see Bound 

et al. (1995)]. 

The weak instrument asymptotics characterizes the near rank deficiency of 

IT'TII using a local-to-zero approximation of II. Staiger and Stock (1997) also 

showed that such approximations are more representative of the finite-sample 

properties of the inference when II (and hence II'TII) is nearly rank deficient. 

Assumption WI below describes a simplified form of the weak instrument char

acterization of Staiger and Stock (1997). 

Assumption WI: 

For i = 1,2, let H = 0kxi/i l[s.=0] + n"1/2Cil[ji=i/2] + Q l ^ i ] where Q is a k x v{ 

matrix of fixed and bounded elements such that C = [Ci, C2] is full column rank 

and 5i are constants such that l[si=o\ + 1^=1/2] + l[^=i] = 1. 

The case with 6t = 1 for i = 1,2 is the regular case where Assumption A holds 

and hence standard techniques such as TSLS are valid, while the other eight 

cases refer to partial or complete unidentification (weak identification) of 9. We 

present this notion more formally in the next chapter where we also show that 

similar to the other tests in the literature, the new projection-type score test 

does not work when the inference is based on TSLS (interpreted as a GMM). 

Furthermore, Chaudhuri et al. (2007) showed that the USSIV estimator of 9 is 

inconsistent under the weak instrument asymptotics and hence the standard 

Wald or score tests (in this case the USSIV score test) for H : B\ — 0»i can be 

over-sized. 

However, the USSIV-framework is useful in the sense that Assumption S is 
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satisfied under Assumption WI. To see this first note the properties of the score 

function that follow from [see (2.14) and (2.15)]. Let 9* be such that v^(0*—0o) — 

dg for some finite real number do = (d[, d'2)' [where dj is a i/j x 1 vector for i = 1,2]. 

Observe that conditional on sub-sample b, 

09 -(y(a) - X{a)9*)'N(Z{a))(y{a) - X(a)9*) -> c, 

(ii) —X'^X^ai,) —• cU'^TU.^ is positive definite [Okamoto (1973)], 
n 

{Hi) -7=VsQn(fi*) = -j=^6Qn{BQ) + -VeeQn{9) n 
de^N (ydi[b)rude,S[b)ru(b)) 

where 9 is such that \/n\\9 — 0O|| < v^H^* - #o|| = H êll and hence 

(iv) 
1 

d 

VlQ„(0*) - (^"('06)1^(06)2] (^('06)2^(06)2] V2(5n(^*) 

The above observations suggest that Assumption A holds in the USSIV-

framework conditional on sub-sample b and hence so does Assumption S. There

fore, the usual score statistic for jointly testing 6>i and 92 takes the form 

Kbb(9) = 
(y(o) - X{a)9)'P(X(ab))(y{a) - X(a)9) 

^z-M«) - X{a)9)'N(Z(a))(y{a) - X{a)9)' 
(2.18) 

This is same as the split-sample statistic considered by Staiger and Stock 

(1997) and Dufour and Jasiak (2001). From (i), (ii) and (Hi) it follows that 

TZss(9o) —*• xl-10 Hence the usual method of projection based on the score statis

tic rejects the null hypothesis Hi : 9\ = #*i at level at most e if 

e}?l2K
bb(0^°2)>xi(l-e). (2.19) 

10The asymptotic test "based on generated regressors", proposed by Dufour and Jasiak 
(2001), rejects the null hypothesis 6 = 0, at level e if1Zss(6*i,62) > xlO- - <0-
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On the other hand, from (2.2), (i), (ii) and (iv), it is clear that the efficient 

score statistic for 9U which takes the form 

(l/(o) - X{a)6)'P (N(Xiab)2)X(ab)1) (y(a) - X(a)0) 
l U ^-k(y{a)-Xia)9yN(Z{a))(y{a)-X(a)9) ' 

satisfies the property Kssi(do) —> x£x- But, as shown by Chaudhuri et al. (2007), 

this result is not of much use in designing the usual score test (in this context, 

the USSIV score test) when 82 ^ 1. This is because when 82 is not identified, 

it is not possible to obtain a consistent estimator of 92. In particular the es

timator 0„2(0oi) = \X[ab)2X{a)2j X'(ab)2 (y(a) - X(a)601), obtained by maximizing 

Qn(Ooi,&2) with respect to 02, is inconsistent. This is known to cause the up

ward size-distortion of the (USSIV) score test for H\ : Q\ — 0*i, based on the 

USSIV-framework, when the unknown nuisance parameters 02 are not identi

fied; the distortion is more severe when the corresponding regressors X2 are 

highly endogenous. 

However, Chaudhuri et al. (2007) also showed that the confidence region 

C2(1-CA:) = W ^ f a l t ( 0 * ) < ^ 2 ( W ) } , where (2.21) 

Tlf aIt(0) = 
(y(a) - X(a)9)'P (X{ab)2) (y(a) - X{a)9) 

^rk(y(a) - X{a)eyN(Z(a))(y{a) - X{a)9)' 

is such that - (i) it always has the correct coverage probability 1 - C> (ii) it is 

never empty, and (iii) only 9*2 in the i/^-neighborhood of 8Q2 has non-zero prob

ability of being contained in this region when 52 = 1, i.e., when 92 is identified. 

Therefore, the new projection-type score test can be applied to test Hi : 9i = 9^. 

The new test, as described before, rejects the null hypothesis when 

inf K!s(9*)>xlAl-e). (2.22) 
e.2€C2(i-c,e.i) x 
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In the next sub-section we present a Monte Carlo study of the finite sample 

behavior of the new projection-type score test described in (2.22) and show its 

superiority over the usual projection-type score test described in (2.19). 

2.3.2 Finite-sample properties: Simulation study 

The simulation study shows that - (i) the new projection-type score test is 

not as conservative as the usual projection-type score test, and (ii) when 6 

is identified, the finite-sample power of the new projection-type split-sample 

score test "almost" attains the "infeasible power envelope" provided by the 

finite-sample power of the infeasible score test, which rejects Hi : 0i = 0*i if 

ft?5(0*i,0o2)>X^(l-e). 

The data generating process (DGP) from the model in (2.11) is similar to 

that in Dufour and Taamouti (2005a). Our results are based on 10,000 replica

tions and are also supported by a more extensive simulation study conducted 

by Chaudhuri et al. (2007). The DGP is described below. 

' 1 0.8 0.8 ^ 

(a) E = 0.8 1 0.3 , 0oi - 0.5, 0O2 = 1, n = 100, na = 75 and nb = 25. 

v 0.8 0.3 1 j 

(b) The first column of Z is an n x 1 column of ones and the elements in the 

other k — 1 columns are generated as i.i.d. N(0,1) variables but are kept 

fixed over simulations. We report the results for k = 4 and k = 10 (for 

size-comparison only). The results are similar for other choices of k (not 

reported) that are not too large as compared to na and nb. 

(c) II is constructed such that II = C/Vn where C = [Q, C2] and the elements 

of Q are set at 0, 1.1547 and 20 when 5t — 0, 1/2 and 1 respectively for 

i = 1,2. This satisfies the classification of "unidentification", "weak iden

tification" and "strong identification" by Dufour and Taamouti (2005a). 
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The usual and new projection-type (split-sample) score tests never over-

reject the true value of 0\ even in finite-sample [see Table 2.1]. The results 

are similar even if we consider sample size as large as 10,000 with n\ = 7,500 

and n2 = 2,500 [see Table 2.2]. 

Now let us turn to the finite-sample rejection rate of the false values of 0\. 

This discussion is based on Figure 2.1. 

It is clearly evident that the new method of projection is considerably less 

conservative than the usual method; for example, the rejection rate of the new 

test with £ = l%,e = 5% uniformly dominates the rejection rate of the usual 

projection-type split-sample score test with e = 10%. 

Regarding the choice of £ and e. the conservativeness of the new test de

creases more rapidly when e increases. Moreover, when 92 is strongly identi

fied, the effect of the choice of C on the over all conservativeness of the new test 

seems to be negligible. 

Validating the analytical discussion in this chapter, the simulations also 

provide ample evidence of the (local) asymptotic equivalence between the new 

projection-type (split-sample) score test and the infeasible split-sample score 

test when 9\ is weakly identified or strongly identified. 
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Table 2.1: Rejection rates for H : Qx = #0i when na = 75, nj, = 25. 

Identi
fication 

for 0i 

<*! = 0 

tfi = i 

< 5 1 = 1 

for6>2 

Instruments 
usual: 5% 

usual: 10% 
new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

usual: 5% 
usual: 10% 

new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

usual: 5% 
usual: 10% 

new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

5 2 - 0 
k=4 k=10 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
5.4 5.5 
0.0 0.0 
0.2 0.1 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
5.4 5.5 
0.0 0.1 
0.2 0.2 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
5.3 5.2 

62 = \ 
k=4 k=10 
0.7 0.7 
2.1 1.7 
0.0 0.0 
0.0 0.0 
0.2 0.1 
0.5 0.4 
5.3 5.4 
0.8 0.7 
2.1 1.8 
0.2 0.0 
0.2 0.0 
0.2 0.1 
1.0 0.4 
5.4 5.4 
1.3 0.6 
3.0 1.6 
0.2 0.1 
0.2 0.1 
0.2 0.1 
0.8 0.4 
5.3 5.4 

d2 = l 
k=4 k=10 
1.6 1.4 
3.5 3.5 
0.9 0.8 
3.4 3.3 
4.2 4.2 
4.4 4.5 
5.5 5.4 
2.0 1.5 
3.9 3.4 
1.1 0.8 
3.8 3.2 
4.6 4.1 
4.8 4.3 
5.7 5.2 
1.7 1.8 
3.4 3.5 
1.0 1.1 
3.4 3.7 
4.2 4.5 
4.4 4.7 
5.2 5.3 
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Table 2.2: Rejection rates for H : 9X = 901 when na = 7500, nb = 2500. 

Identi
fication 

for 0i 

Ji = 0 

* = § 

<*! = ! 

for02 

Instruments 
usual: 5% 

usual: 10% 
new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

usual: 5% 
usual: 10% 

new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

usual: 5% 
usual: 10% 

new: (4%+l%) 
new: (l%+4%) 
new: (l%+5%) 
new: (5%+5%) 
infeasible (5%) 

<52 = 0 
k=4 k=10 
0.1 0.1 
0.3 0.2 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
5.0 5.6 
0.1 0.0 
0.2 0.2 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.1 0.0 
5.4 5.1 
0.1 0.1 
0.2 0.1 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
5.1 4.8 

52 = \ 
k=4 k=10 
0.7 0.9 
1.6 2.2 
0.0 0.1 
0.1 0.1 
0.1 0.1 
0.4 0.5 
4.8 5.1 
0.7 0.9 
1.5 2.1 
0.0 0.0 
0.0 0.1 
0.0 0.1 
0.4 0.6 
4.8 5.2 
0.6 1.1 
1.5 2.8 
0.0 0.2 
0.1 0.1 
0.1 0.1 
0.3 0.6 
4.7 4.9 

82 = 1 
k=4 k=10 
1.6 1.5 
3.2 3.3 
0.9 0.8 
3.3 3.5 
4.0 4.5 
4.3 4.6 
5.1 5.2 
1.4 1.4 
3.2 3.2 
0.9 0.8 
3.0 3.4 
3.8 4.2 
4.2 4.4 
5.2 5.0 
1.6 1.5 
3.3 3.2 
1.0 1.0 
3.3 3.4 
4.0 4.3 
4.2 4.5 
5.0 5.0 
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6, unidentified 
1 

0.05 

0.04 

0.03 

0.02 

0.01 

* • • * • • * • * * . * . 

* • * . 

' * + • * < * • • * • * . * . 

f * H H H H ><• * - H H M M M >t * 

g-g-a-ct-B- H-a-ji 

-10 -5 
9*reoi 

6 weakly identified 

10 

6 strongly identified 

• • • * • 

- usual method: e = 5% 

usual method: e = 10% 

- new method: t, = 4% and e = 1 % 

new method: t, - 1 % and e = 4 % 

• new method: L, = 1 % and e = 5% 

- new method: C, - 5% and e = 5% 

infeasible SS score test: size = 5% 

- 5% line 

Figure 2.1: Rejection rates for H\ : Q\ — #*i when 92 is strongly identified, 
na = 75, nb = 25 and k = 4. 
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C h a p t e r 3 

T H E N E W P R O J E C T I O N - T Y P E S C O R E T E S T I N GMM 

In this chapter we describe the application of the new projection-type score 

test to a widely used sub-class of extremum estimators - the GMM estimators. 

The assumptions made here are more specific to the GMM framework than 

those of the last chapter. 

The moment restrictions defined below can (but need not) be viewed as 

obtained from the first order condition of some optimization problem. Let 

g : 0 x <S h-> Rk be a measurable and twice-continuously differentiable func

tion such tha t 

Eg(zt,d) = 0 if 0 = do, 

# O i f 0 ^ 0 „ . 

Equation (3.1) gives k > v moment restrictions for inference on v unknown 

elements of 9 and is often referred to as the global identification condition. Let 

v and k be fixed and finite numbers. We suppress the explicit dependence of the 

functionals on the observations in the rest of the discussion to avoid notational 

clutter; for example, gt(9) should be read as g(zt, 9). 

For simplicity, let 90 — (9'01,902)' be such tha t 90i e interior(0;) where 0j 

is a compact (z/rdimensional) subset of RUi for i = 1,2. The parameter space 

0 = 0 i x ©2 is a compact subset of W where v = v\ + v^-

A GMM estimator of 9 is defined as 9n = argmin^ee(5n(^) where Qn{0) is 
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some objective function taking the form: 

n 

£&(*) 
-*=i 

i 

Wn(9n) 
n 

£*(*) 
.*=i 

and Wn(dn) is some positive (semi)definite weighting matrix. In the usual two-
p 

step GMM, 6n is some initial (possibly inefficient) estimator such tha t 0n —• 9$. 

The Continuous Updating GMM (CU-GMM) uses Wn(9n) = Wn(9) such that 

Wn(9) converges uniformly to a positive definite matrix for 9 £ 0 . Efficient 

estimation in both types results when, for all 6n —> 80 and the weighting ma

trix Wn(9n) —> Var~l [limn^00n''1^2Y^=i9t(9o)] (provided the limit is positive 

definite). 

In this chapter we show tha t under weak identification, in the sense of 

Stock and Wright (2000), the new method of projection based on Kleibergen's 

K-statistic offers a valid way of testing hypotheses of the form H\: 9\ = 8^. Be

fore describing the operational details, it will be helpful to introduce the weak 

identification framework and the related assumptions on the moment restric

tions following Stock and Wright (2000), Guggenberger and Smith (2005) and 

Kleibergen (2005). 

A word on our notations: for any random variable X such that -E||X|| < oo, 

let X = X — EX. Since all the matrices considered here are of finite dimension, 

we tend to be less scrupulous with mixing the notations like X = op{\) and 

||X|| = op(l); both implying that every element of X converges in probability to 

zero. 

1In continuation to the previous chapter, one could define 6n = argmaxgge —Qn{8) where 
Q„(9) is as defined in (3.2). The multiplier 1/2 is for convenience. 
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3.1 Weak identification and other assumptions 

High level assumptions on the moment restrictions and their first derivatives 

are summarized under Assumption M. These assumptions are more specific to 

the GMM setup than the generic ones mentioned under Assumption A in the 

last section. 

Assumption M: 

Ml . There exists an open neighborhood T c 0 containing 80 where 

(i) n _ 1 E"=i &W ^s continuously differentiable almost surely 

(ii) sup e e r ||Von"1 EJLi 9t{&)\\ is integrable. 

M2. s u p ^ e ^ E L i ^ W = o„(l), n - ' E ^ i vW<?) = op(l), n"1 £ ? = 1 VMgt(e) = 

op{l) where V9gt(d) := dgt(6)/dd' and V ^ ( ^ ) := dvecVsgt(d)/d6'. 

En'1 EJLi Veegt(6) converges to some continuous and bounded function 

L(0) for 0 e 0 . 

M3. n - V 2 ^ = 1 
5t(0o 

vecVegt(0o) 
iV (0, V(#o)) a n a the asymptotic 

variance-covariance matrix V{6) = ((Vab(6)))a,b=g,v is bounded, continu

ous, symmetric and positive semi-definite. Vgg(6) is symmetric, positive 

definite and differentiable with respect to 6 6 6 . 

M4. There exist VVg(6) and a symmetric positive definite matrix Vgg(9) such 

tha t 

%g{9) - V79(0) = op(l) and dvecVgg(6)/dff - dvecVgg(0)/d6' = op{\) for 0 e O 

and sup^© F5g(0) - F55(0) = op(l). 

The characterization of weak identification due to Stock and Wright (2000) 

is summarized under Assumption W. 
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Assumption W: 

H £?=i 9t(0i, O2) = E t i l [ * = W * i ) + l[Si=i]n-1'2mni(0u02 1/2T 

V'" 
where for i = 1,2, 

1. mi(90i) = O,mj(0j) 7̂  0 for 0* ^ 0Oj, Mj(0j) := dmi{9i)/d9'i is continuous and 

Mj(0oi) has full column rank. 

2. rhni(9) —v mj(0) uniformly in 0 £ 0 , m;(0o) = 0 and mj(0) is continuous in 

0 and bounded on G. For i, j = 1,2, M„(jJ)(0) := dmni(6)/d9'j converges to 

some function M^j)(9). 

Discussions on Assumptions M and W can be found in Stock and Wright 

(2000), Guggenberger and Smith (2005) and Kleibergen (2005). 

The non-random indicator functions involving the <5's in Assumption W dis

tinguish between the four cases of weak partial identification summarized in 

Table 3.1.2 

Now note that Assumptions Ml , M2 and W imply that for 9 e T and for 

i = l,2, 

1 n ft 1 n 

Jn i(0):=i^V,]r>(0) = _25_5>( ,SI ) 
t=i l t=i 

2 6-

lft=i]^(«.) + E Ms^-s-M^j^) (3.3) 
Jn" 

where V\gt(9) and V2<?t(0) are, respectively, the first î i columns and last u2 

columns of Vefft(0). Assumption W further implies that for i, j = 1,2 (and« ^ j ) , 

Jni(0) is continuous in 0 and 

J™(0) A J,(0) := l^MM) + l[tf4=ij [M ( M )(0) + l[s.=k]Mm(9)] , 

2The values of the Si's are assigned the values \ and 1 because, as it can be seen from (3.3), 
nSi will often be used as a suitable scaling factor. 
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which has full column rank for 9 e 90ix Qj when 0* is strongly identified. When 

both 9i and 92 are strongly identified, this implies the so-called local identifi

cation condition; i.e., the expected Jacobian is full column rank at 6 = do [see 

equation (13) in Kleibergen (2005)]. 

Table 3.1: Four Cases of Weak-Partial-Identification. 

*1 = £ 

$1 = 1 

52 = i 

Wl-Case I 
#i : weakly identified 
92 : weakly identified 

Wl-Case III 
9X : strongly identified 
92 : weakly identified 

<72 = 1 

Wl-Case II 
9\ : weakly identified 
#2 : strongly identified 

Wl-Case IV 
6>i : strongly identified 
02 : strongly identified 

In the context of nonlinear IV regression, Wl-Case IV is the standard case 

where the usual Wald, LR (J) and score tests can be used to test Hi : 9X — 0*i; 

in Wl-Case II, the K-test and the Generalized Empirical Likelihood based test 

[due to Guggenberger and Smith (2005)] can be used to test H\ : 9\ = 0*i; 

finally in Wl-Cases I and III, based on available research, only the projection-

type tests have been shown to be valid for testing Hx : 9i = 9^. We show 

that the new projection-type (score) test based on the K statistic test can be 

validly used under all four cases of partial identification. In addition, under 

Wl-Cases II and IV, this test is shown to be asymptotically equivalent to the 

K-test against v/n-local alternatives. 

It is possible to relax some of our assumptions. For example, since we are 

only concerned with the asymptotic behavior of the tests against y^-local al

ternatives, it is sufficient if all the assumptions specified for 9 e 0 hold in 
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Ti x 92 where 7[ C Oi is an open neighborhood containing #0i-
3 Neverthe

less, we made these simplifying assumptions to avoid the secondary details 

in the exposition which can obscure the basic idea behind the new projection-

type test. Assumption M is stated in a somewhat unconventional form so that 

it can be directly applied to prove our results. However, these assumptions 

are not different in nature from those in Stock and Wright (2000), Guggen-

berger and Smith (2005) and Kleibergen (2005). For example, Assumption B 

in Stock and Wright (2000) states that -^ £™=1 gt(9) => £(6>) for 9 E 9 where 

((9) is a mean-zero Gaussian stochastic process. By definition of weak conver

gence, this implies that sup06e ||-4^ X)"=i 9t(9)\\ —> sup0ee ||£(0)|| a n d thus implies 

that supeee i J27=i 9t{0) = op(l) [see Andrews (1994)]. Under this assumption, 

in order to show the consistency of the CU estimator of a strongly identified 

92, restricted by a hypothesized v^-local Oi, it is also required to assume that 
suP0eTlXe2 M(8)\\ = Op(l). Instead, we directly assume that sup06Q ± ^?=i gt(9) = 

op(l) (in Assumption M2) and that Vgg{9) is bounded in 9 (in Assumption M3). 

Similarly, instead of specifying the form of Vgg(9) and making assumptions 

such as Assumption M(ii) in Guggenberger and Smith (2005) to ensure its 

non-singularity for 9 G T\ x 92, we directly assume that there exists a matrix 

Vgg(9) which is positive-definite along with its convergence result (in Assump

tion M4). Finally, unlike Assumptions Me (iii) and (vii) in Guggenberger and 

Smith (2005), our distributional assumption (in Assumption M3) is local in na

ture [similar to Kleibergen (2005)] and hence we need to specify assumptions 

(in Assumption M2) on the second derivative of the moment vector for studying 

the properties of the new projection-type test against v^-local alternatives. As

sumption Ml, which allows us to interchange the order of differentiation and 

3In fact, to prove the validity of the new projection-type test and to show that under WI-
Cases II and IV it is asymptotically equivalent to the infeasible efficient score test (described 
after Lemma 3.2 and before Theorem 3.3) against y/n-local alternatives, it is sufficient if the 
above assumptions hold in T C 0, an open neighborhood containing 6Q. 
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integration, is made for simplicity. 

3.2 Problem with the usual GMM-score test 

Kleibergen (2005) pointed out that the failure of the usual score test, based on 

the (efficient) two-step GMM, is due to the (asymptotic) non-zero correlation 

between the estimator of the expected Jacobian and the moment vector (both 

under suitable scaling). To see this, assume for now that there are no nuisance 

parameters 92 and hence 9 = #i. Therefore, the only two relevant cases are 

Wl-Case IV - where the parameters are strongly identified, and Wl-Case II 

- where the parameters are weakly identified. The gradient of the two-step 

GMM objective function with respect to 9 is given by 

V*Q„(0) := 
dQn(0) 

39' 
1 
n I>(0) 

4=1 

Wn(8n) X>ft(*) 
4=1 

(3.4) 

where 9n —-> 9Q is some initial first-stage estimator and Wn(9) converges in prob

ability to some positive definite matrix W{9). In Wl-Case IV, using (3.3), As

sumptions M2 and M3, and scaling (3.4) by n~1/2 give 

\fn 
VeQn{90) = 

1 n 1 n 

r £ > ( 0 o ) Wn(9n) -^VeM 
4 = 1 J L 4 = 1 

%W{90)M1{90). 

Thus there is no problem in constructing a score statistic based on n-1/2VeQn(90) 

(compare with the sufficient conditions stated under Assumption S in the last 

section). However, in Wl-Case II the above scaling leads to degenerate results; 

only scaling by 1 results in tractable asymptotic quantities. Such a scaling of 

(3.4) gives 

Ve<2n(0o) = ±p(0o) Wn(9n) ^tje9t(9o) y'W(90)yv 
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and using Assumption M3, it follows that the usual techniques of constructing 

a score statistic are not going to work unless VVs = 0. 

Kleibergen (2005) noted that the CU-GMM offers a natural way of con

structing the estimator of the expected Jacobian such tha t even under weak 

identification, the (scaled) estimator of the expected Jacobian and the moment 

vector are asymptotically uncorrelated (and under Assumption M3, asymptot

ically independent). Kleibergen's K statistic is a quadratic form in the gradi

ent of the CU-GMM objective function; and hence our discussion of the new 

projection-type test is based on the CU-GMM objective function. 

3.3 The new projection-type test based on the K-statistic 

Using Assumptions M3 and M4, the general form in (3.2) can be modified to 

construct the CU-GMM objective function as 

o.w = ~ ! > « > ) 
t= i 

V-\B) ! > ( * ) 
t=l 

The gradient of the CU-GMM objective function with respect to 9 is given 

b y 

v*Qn(*) := ^r- = l9'T(0)vgg
1(e)DT(d) 

n n 

where gT(9) = J > t ( 0 ) , DT(0) = £ A(0), 

and A (6) = deveck [vecVe9t(0) - %g(d)Vgg
1(9)gt(e) 

(3.5) 

The CUE (CU-GMM estimator) 9n of 0 e 6 satisfies the first-order condition 

VeQn{9n) = ViQn(0n), V2Q„(£n) = -g'T{9n)Vq-\9n)DT{8n) = 0 
n 

4See Kleibergen (2005) for details. 
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w.p.a.l. Similarly, under the restriction that 0i = 8*1, the CUE 0„2(0*i) of 02 min

imizes Qn{8*i,82) with respect to 02 E 02 and hence, w.p.a.l, 6* = (0^, 0^2(0*i))' 

satisfies the first-order condition 

v2Qn(&) = - 5 T ( ^ ) ^ 1 ( ^ ) ^ T 2 ( ^ ) = 0 (3.6) 

where DTi(0) = YZ=ideveck[vecVigt{d)-Vig{8)Vg-g
l(8)gt{8)\ fori = 1,2. The 

above expression uses the partition £>r(0) — DTI(8),DT-Z(8) and %g(8) = 

[V{g(6),Vig(6)]' with respect to 8X and 02. 

Lemma 3.1 Let 0*i — 90i + d\l^fn e 0 where d\ e R1"1. TTierc under Assumptions 

M and W, ^(0n2(0«i) - 902) = Op(l) in Wl-Cases II and IV. 

Lemma 3.1 follows directly from Lemma Al in Stock and Wright (2000) 

which shows the y'n-consistency of the unconstrained estimator of 02 under 

Wl-Case II. 

Kleibergen's K-test rejects the null hypothesis Hi : 81 = 0»i at level e if 

Kn(6*) > xli (1 ~ e) where the K-statistic is defined by Kleibergen (2005) as 

Kn{8) = n (VtfQn(fl)) [L\(e)V-1(B)DT(e)] ~* (V*Qn(0))'. (3.7) 

In Wl-Cases II and IV and under Assumptions M and W, Kn(90i, 9n2(9oi)) —> 

xlx • See Theorem 2 in Kleibergen (2005) for the proof under presumably weaker 

conditions. The limiting xlt distribution of the K-statistic Kn(90i,8n2(90i)) in 

Kleibergen's proof crucially depends on the -^-consistency of 0„2(0Oi). 

However, under Wl-Cases I and III, 0„2(0oi) is inconsistent and the proper

ties of the K-statistic (and hence the K-test) are an area of current research. 

It is in these two cases where the literature recommends the use of projection 

techniques. Hence our test, which is a projection-type test based on the K-

statistic [and described in Theorem 3.3], is likely to be most useful in these two 
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cases because it is generally less conservative than the usual projection-type 

tests and at the same time it avoids an uncontrolled over-rejection of the true 

parameter values. 

Notice that the form of the K-statistic in (3.7) satisfies the sufficient condi

tions mentioned under Assumption S (in Section 2). Hence we can follow the 

same principle, as described in the last section, to construct the new projection-

type test based on the K-statistic. To do that, define the estimated efficient 

score version for 9\ as 

vi.2Q„(0) = l&WVgghe)* (vgy (d)DT2(dfj vJ\e)DT1(e). 

Since V2<5„(̂ *) = 0 w.p.a.l [see (3.6)], it becomes obvious that K(9„) is a 

(normalized) quadratic form of the estimated efficient score of Q\ evaluated 

at 0», once we note that the top-left v\ x vx block of D'T(9)Vgg
1(9)DT(9) is 

~_I / - _ ! ' - \ -_! ' - I"1 

DTi(e)V992(e)N I v992 {9)DT2{9) ) Vgg
2 (9)DT1(9) . Finally, similar to the ef

ficient score statistic Ri(9) in the previous section, define the efficient score 

version of the K-statistic (or the efficient K-statistic) as 

Knl{6) = 

n^1.2Qn(9))^D'T1(9)Vg7(9)N (v^'{9)DT2{9)^ %7 (9)DT1(9))j (V1.2Qn(9))'. 

Lemma 3.2 Let 9ni = 90i + dk/y/n G 0 such that for i = 1,2, d* e W is fixed; 

and let 9n = (9'nl,9'n2)' and do := (d'^d!^)'. Let L{9) and ^v.g be partitioned with 

respect to 6X and 92 such that L{9) = \L'X{6), L'2(9))' and *y.g = [%g, %.g}'- Then 

under Assumptions M and W, 

(i) Knl(9n)^M'P(N{A2)A1)M 

(ii) Kn2(9n) := n (V2Qn(9n)) [D'T2(9n)Vgg
1(9n)DT2(9n)y

1 (V2Q„(0„))' ^ WP (A2) I 
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(Hi) Sn(8n) := 2Qn{dn) A B'B 

where At = TV (0O) [Ji(60) + (1 - l[«i=i])de?;ecfc [^>i.g + L;(<90)de]] for i = 1,2 and 

B = TV(0o) [*9 + E l i l[*4=i] î(<?oi)di]. 

Lemma 3.2 is proved in the Appendix. Several remarks are in order here. 

(i) It follows from Lemma 3.2 that Knl(90) -^ xlx in Wl-Cases I-IV. Fur

ther using Lemma 3.1, it follows that Kn{6ni, ^2(^1)) = Kn\{6n) + op(l) — 

Kni(8m, M + op(l) in Wl-Cases II and IV. 

(ii) Kn2(0*i, 0*2) is the K-statistic for testing H2 : 92 — #*2 when Q\ is assumed to 

be equal to #*i (and hence no longer considered an unknown parameter). 

Note that Kn2(90) —> xl2, i-e- if the true value of 9\ is known a priori 

then the test which rejects H2 : 92 = 9*2 if Kn2(901,9*2) > x^(l - 0 has 

asymptotic size 1 - (• In Wl-Cases II and IV, Kn2(9n) converges to a non-

central xL distribution with non-centrality parameter 

5^1fe=i]Mi(0w)di 
» = i 

V97(8o)P [Vg7 (90)J2(90) I V (0„) 2 1[<5i=l]^i(^0i)^ 
»=1 

which, under (3.1), can be finite only in the y^-neighborhood of 9Q2. 

(iii) Sn(9n) is the S-statistic proposed by Stock and Wright (2000). In WI-

Cases II and IV, Sn{9n) converges to a non-central \\ distribution with 

non-centrality parameter 

$^l[(54=i]Af,i(0oi)di 
i=\ 

V-\9Q) ^ l ^ i l M i ^ d j 
t = i 

which, under (3.1), can be finite only in the v^n-neighborhood of 902. When 

#01 is known a priori, then the test which rejects H2 : 92 = 9*2 i£Sn(90i, 0*2) > 

xl(l - C) has asymptotic size 1 - £. 
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From the above discussion it should be clear that in Wl-Cases II and IV, and 

against ^/n-\oca\ alternatives, the level-e K-test for Hi : 81 = 0*i is asymptoti

cally equivalent to the infeasible efficient K-test which rejects Hi : 6\ = 0*i at 

level e when Kni(6*1,602) > ^(l — e). The latter test uses the unknown true 

value of the nuisance parameter 61 and hence is infeasible. Based on these ob

servations, we define and describe the new projection-type score (K) test for the 

null hypothesis Hi : &i = 0*i in Theorem 3.3. 

Theorem 3.3 Let 6*1 = 0Oi + di/^/n e 0 where di e W1. Define C2(l - C, <?*i) •= 

{6*2 • Sn(d*i,6*2) < Xfc(l - C)}- Define the random variable 0„(0*i) := (j)n (0*i, {zt}"=i) 

as 

j. nx x I 1 lf C^1 ~ t> °*^ = 0 or i n Wc 2 ( i -cA!) Kni(0*i, M > X^(1 - e) 
<Pn(0*l) = < 

I 0 otherwise 

The new projection-type test based on the K-statistic rejects the null hypothesis 

Hi: 61 = 0*i if 4>n(6*i) = 1- Under Assumptions M and W, 

(i) lim^oo Eg0l4>n(6m) < e + (; 

(ii) if in Wl-Cases II and IV, C2(l — (, 6*1) is nonempty w.p.a.l, then 

lim [£0oA(#*i) - Preoi [Kni(6^602) > x £ ( l ~ e)]] = °-
n—>oo 

Theorem 3.3 describes the new projection-type test based on the K-statistic. 

The size of this test is bounded from above by e + C- Under Wl-Cases I and 

III, e and C can be chosen such that the desired level of the test is not ex

ceeded. Under Wl-Cases II and IV, the choice of ( becomes asymptotically 

irrelevant if the first-stage confidence set for 0O2 is nonempty w.p.a.l; then 

the new projection-type test against y^-local alternatives is asymptotically 



www.manaraa.com

45 

equivalent to the infeasible efficient K-test rejecting Hi : 6\ = 0*i at level e 

ifKni(9,i,d02)>xl1(l-e). 

It is straightforward to see that the new projection-type test can be inverted 

to obtain a confidence region for 9% as 

{0*1 : M0*l) = °> 

= {^ i :c 2 ( i - c , e*i)?0,a M / n i ( « , i , y < ^ ( i - £ ) 
^ e,2eC2(i—c>0*i) 

This is a conservative (1 — e — £)-level uniform asymptotic confidence region for 

61, the uniformity follows from the fact tha t we are considering the infimum 

of the efficient K-statistic. In Wl-Cases II and IV, the region's coverage (and 

length) is asymptotically equivalent to the asymptotic coverage (and length) of 

the infeasible region {d.x : Knl{6*i,002) < xlx{
1 - e)} i f Ca(l - CA) ^ 0 w.p.a.l 

for #i = 0oi (for #i £ ©i)- The asymptotic equivalence under Wl-Cases II and 

IV naturally extends to the K-test for subsets of parameters (see the discussion 

preceding Theorem 3.3). 

Another choice for the first-stage confidence set C2(l — C>#*i) i s the region 

Cf (1 - CAi) = {0.2 • ^2(0*1,0*2) < X*2(l - C)} [see Lemma 3.2(H)]. By def

inition, -Kn2(0*i, #712(0*1)) — 0 and such a first-stage confidence set for 02 is 

nonempty w.p.a.l. This further implies that 

# n ( 0 . 1 , M 0 , i ) ) > ^ K n l ^ 
0„2€Cf (1-C,0.l) 

and hence the power (size) of the K-test for Hi : Bx = 0»x dominates the power 

(size) of the new projection-type test when this region is used in the first step. 

However, using C2(l — e, 0*i) in the statement of Theorem 3.3 has a major ad

vantage. The underlying S-test concurrently tests the model-specification (i.e. 

£54(0*1,0*2) = 0) and thus, under equation (3.1), rules out the spurious de-
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cline of power at all local-minima and saddle points (unless present in the ^/n-

neighborhood of 90) of the objective function which is typical to tests based on 

the K-statistic. As a consequence, unlike Kleibergen (2005), a separate pre

testing for misspecification is not required to avoid the spurious decline in 

power of the new projection-type test. 

It is important to note that since C2(l - C>0*i)» m the statement of Theo

rem 3.3, can be empty with positive probability, the asymptotic equivalence in 

Wl-Cases II and IV may not hold - the new projection-type test can be more 

powerful than the infeasible efficient K-test and the K-test and the asymptotic 

size of the new test may belong to the interval (e, e + C)- The Monte-Carlo ex

periment in the next section reveals this fact. 

The usual projection-type test for Hi : 9\ = 6*i based on the K-statistic 

rejects the null hypothesis at level e if infe»26e2 Kn{Q*i, 0*2) > xl(l — e). The K-

test for Hi : 6X = 0*i is at least as powerful as the usual projection-type test 

[see Lemma A.6 in the Appendix]. Similar conclusions can be expected when 

comparing the new projection-type and the usual projection-type tests based 

on the K-statistic in Wl-Cases II and IV. All the tests discussed in this section 

can be validly applied even under complete unidentification [see Phillips (1989) 

and Kleibergen (2005)]; of course none of them will have any power against the 

alternatives. 

Finally it should be noted that , if it is possible to obtain a y^-consistent 

point estimator for a subset of the nuisance parameters, the computational 

cost of the new projection-type test can be reduced significantly by using this 

estimator and restricting the search for the infimum of the efficient K-statistic 

to the remaining nuisance parameters only. 
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3.4 Application to a linear IV regression 

In this section we do a Monte Carlo study and show tha t the asymptotic theory 

of the last section provides a good approximation to the finite-sample behavior 

of the new projection-type test in a linear Simultaneous Equations model. We 

briefly discuss how the general theory simplifies in this setup before describing 

our simulation results. 

3.4.1 Simplifications under this framework: 

Our framework is similar to that of Kleibergen (2004) and Zivot et al. (2006). 

Consider the linear IV model (2.11) in Section 2.3, of course without splitting 

the sample. Then the different quantities from the general exposition in the 

GMM setup translate into 

(i) gt{9) = Z't(yt - Xtff) = Z'tZtU(90 -9) + Z't{ut + ^ - 9)) and E[gt{9)\ = 

Z'tZtU(90 - 9), 

(ii) vegt(9) = -Z'tZtU - Zfa, E[7egt(9)} = -Z'tZtU, 

(iii) Veegt(9) = 0 and L{9) = 0, 

(iv)m= v„m vAe) 1 0ix v 

9 — Go Iv 
and = (fi'Sfi) <8> T where n = 

VVg(9) Vvv{9) 

T = lim„_oo n~l £]"=i Z'tZt is assumed to be a finite, symmetric, positive 

definite matrix. 

The conditions for Assumption M can be enforced simply by assuming that 

(a) #o S interior(G) where 0 is compact, (b) the sample moments involving Ut, r\u 

and r]2t converge in probability to their expectations, and (c) n~^2Z' (u, r}\, r]2) —> 

T*' (feu, £zi, &J2) where vec (&u , £zi, 6?2) ~ N(0, E ® 4 ) [see pages 1070-1071 in 

Stock and Wright (2000)]. 
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Thus the other relevant quantities translate into 

(v) * g = T 3 ' [ ^ u + M 0 o i - 0i) + ^2(^02 - e2)\, * V = -T2 ' [*z i , ' M , 

(vi) 17(0) = n-1^/ - X0, -X]'Nz[y - Xd, -X] <g> ±Z'Z and 

(vii) 5 r i = '-Z'Xi + Z'(y - X6){y^-x<W**X9) for i = 1,2. 

Finally, note from (i) and (iv) that the moment restrictions in (3.1) are valid 

as long as II is full column rank. Hence we can recast Assumption W in this sce

nario by modeling weak identification using the weak instrument framework of 

Staiger and Stock (1997). In particular, we assume that II* = l[5i=i]Ci + l [ 5 . = i ]% 

where for i = 1,2, C* is a k x 14 matrix of fixed and bounded elements such that 

C = [Ci, C2] is full column rank [similar to Section 2.3]. 

Therefore, the expectation of the average moment vector and its first deriva

tive are 

(viii) E[n-lgT{e)\ = n-'Z'ZZlAMs^Ci + l[*=i]7&W« - W 

(ix) Ein-^egrid)] = -n'1 Z'Z ^tiiM^Q + l [ 4 i =i]^] implying that 

(x) Jni := E[n-Si VigT(0)} = -n^Z'Zd and J£6) = - T Q for i = 1,2. 

It is apparent that the specific structure of the moment restrictions allows 

for substantial simplification in this section. Another simplification comes 

when finding the CUE 6>„2(#*i) of the nuisance parameters 92; because of the 

block-diagonal covariance matrix of the structural errors, the minimization of 

Qn(&*i,02) with respect to 92 boils down to an eigen-value problem and this 

significantly reduces the computational cost of Kleibergen's K-test.5 To high

light these simplifications, it is helpful to restate the forms of the relevant test 

5The simplification assumes that 0 2 = M."2 and hence relaxes the compactness assumption. 
However, for all practical purposes relaxing the boundedness assumption is not going to 
alter the results in this linear model. Alternatively one can also impose a condition similar 
to Assumption D in chapter 4 of Amemiya (1985). 
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statistics using the construction of Moreira (2003). This directly fits into the 

framework discussed previously under Assumption S [Chapter 2]. 

The CUE of 9 minimizes the objective function: 

Qn(e) - ^9T(d)vag {B)gT{d) - 2{y-xeyN(z)(y-xey 

After suitable standardization with respect to Vgg(9) and hence defining 

KM) - n-y^'iewie) - (*Wfr - xl9l - x2o2) and 

^(y-X9)'N(Z)(y-X9) 

H'n{9) = n~1/2Vg7(6)DT(d) = [H'nl(6), H>n2(9)}' where for i = 1,2, 

H'ni(0i,82) = n-1'2Vgg
h'(.0)DTi(9) {z'zyVz1 

y/±(y-X0)'N(Z)(y-X8) 
* - < y - * * - * * ) : ( » - ^ W ^ 

(y-X9)'N(Z)(y-X9)\[ 

we note that Qn{9) = \h'n(8)hn{9) and VeQn{9) = [ViQn(0), V2<5„(6»)] = Hn(9)hn{9). 

We compare the finite-sample performance of the new projection-type score 

(K) test against that of the projection-type test based on the AR(S) statistic and 

the original K-test. 

The projection-type test based on the AR statistic rejects Hi : 9X = 0*i at 

level at most e if inf^2€02 AR(9*) > xi(l - e) where AR{9) = S{0) := 2Qn{9) = 

h'n(9)hn{9). See Dufour (1997), Staiger and Stock (1997), Stock and Wright 

(2000) and Dufour and Taamouti (2005b,a) for details. 

The K-test rejects Hx : 9± — 9*i at level e if Kn(9*) > x^(l - e) where 9* = 

(^1,^2(^1))' a n d Kn(9) := h'n(9)PHn(e)hn(9). See Kleibergen (2004, 2005) for 

details. 
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The new projection-type test based on the K-statistic rejects Hx • Q\ = 0*i at 

level at most e + C if 

e 2 ( l - < A i ) = 0 o r inf Knl(8«)>xl1(l-e) 
vi € 0 2 ( 1 — Ci»* l ) 

where C2(l - CAi) := {0*2 : AR(d,) > xli} - 0 } 

and Knl{6) := hn(d)NHn2{e)Hnl(6) [Hnl(e)NHfia{e)Hnl(e)]-1 Hnl(0)NHn2{9)hn(d). 

3.4.2 Finite-sample properties: Simulation study 

The true values of the structural coefficients are arbitrarily taken as #0i = 1 

and #02 = 10. We take the sample size n = 100. 

The structural errors [u, 771,772] are generated by drawing n independent ran

dom samples from JV3(0, S) where 

S = 

1 Pul Pu2 

Plu 1 0 

\ P2u 0 1 y 

(3.8) 

If 771 and 772 are correlated, the level of endogeneity of the regressor Xx de

pends on the correlations between [r/i and u], [r]i and 772] and [772 and u]. Our 

choice of E in (3.8) simplifies the set-up by ensuring tha t the level of endo

geneity of Xi depends only on the correlation between ??! and u and simi

larly the level of endogeneity of X2 depends only on the correlation between 

772 and u. We make three different choices for the pair (pui,pU2)' (Pui,pU2) = 

(0.5,0.5), (0.1,0.99), (0.99,0.1). Xx and X2 are moderately (and equally) endoge

nous in the first case, Xx is highly endogenous and X2 is mildly endogenous in 

the second case, Xx is mildly endogenous and X2 is highly endogenous in the 

third case. We refer to the corresponding covariance matrix of the structural 

errors as Si, S2 and S 3 respectively. 



www.manaraa.com

51 

The instruments Z are generated by drawing n independent random sam

ples from JV(0,4-i) independently of the structural errors and appending the 

matrix with an n x 1 column vector ln. We consider three different values of k: 

k — 2,4,20, The first choice gives a just identified model and the latter two give 

over-identified models. The large value k — 20 is taken in accordance with the 

result that when the nuisance parameters are completely unidentified, the lim

iting null distribution of the K-statistic converges to the xtx distribution from 

below as k —» oo and n —> oo such that k/n -> 0 [see Kleibergen (2007)]. 

To our knowledge, there does not exist a universally accepted measure of in

strumental relevance for individual structural coefficients in a linear IV model 

with more than one endogenous regressor. However, for a model with a single 

endogenous regressor, the instruments are considered weak for the structural 

coefficient if the concentration parameter is less than 10 [see Staiger and Stock 

(1997)]. We follow Zivot et al. (2006) and generate the matrix II such that the 

concentration matrix fj,, as defined by Stock and Yogo (2005), is diagonal where 

for i = 1,2, the i-th diagonal element //* corresponds to the concentration pa

rameter for 6i. The weak instrument setup for the experiment is summarized 

in Table 3.2. 

Table 3.2: Four Cases of Weak Instruments. 

Ml = 1 

/ii = 10 

/"2 = 1 

WI-Case I 
9\ : weak instrument 
02 : weak instrument 

WI-Case III 
di : strong instrument 
62 : weak instrument 

/i2 = 10 

WI-Case II 
6\ : weak instrument 
62 : strong instrument 

WI-Case IV 
6>i : strong instrument 
02 : strong instrument 
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The results reported below are based on 10,000 Monte-Carlo trials. The 

instrument matrix Z is kept fixed over the 10,000 trials. 

We choose e = 0.05 and consider two different levels for the first-stage con

fidence set by choosing £ = 0.01 and £ = 0.05. The finite sample rejection rate 

of the tests for Hx : Q\ = 0*i are plotted in Figures 3.1 - 3.9. The four different 

tests considered are: (i) AR: the projection-type based on the AR statistic, (ii) 

K: the K-test, (iii) the new projection-type score (K) test with £ = .01, and once 

again, (iv) the same new projection-type score (K) test, but with ( = .05. 

The figures plotting the finite-sample rejection rates show that the asymp

totic assertions regarding the new projection-type score (K) test are equally 

true in finite-sample. Similar results for the K-test and the AR test are already 

well known [see for example, Kleibergen (2004) and Zivot et al. (2006)]. 

Simulations show tha t the projection-type test based on the AR-statistic is 

extremely conservative. As mentioned in Kleibergen (2007), the simulations 

also show that the K-test is conservative when the instruments are weak for 

Q<i\ the estimated size approaches e = 0.05 when the number of instruments 

gets large (i.e. when k = 20). 

The estimated size of the new projection-type test based on a 95% first-

stage confidence region for 62, exceeds 5% (= e) in cases where this region is 

more likely to be empty. This happens mainly when X2 is highly endogenous 

and/or the number of instruments is large [see Table 3.3], and to a large extent 

explains the difference in size between the new projection-type tests based on a 

1% and a 5% first-stage confidence region. However, the estimated size of these 

two tests never exceeds 6% and 10% (£ + e) respectively as was suggested in 

Theorem 3.3. This means that if even slight over-rejection of the true value of 

the parameters is of serious consequence, one should choose e and C such that 

e + C does not exceed the desired level of Type-I error; for any given e + C, a 

smaller value of ( with respect to that of e may result in better power. 
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Tables 3.3-3.6 summarize the likelihood of occurrence of different struc

tures of the first-stage confidence region based on the All-statistic. To see how 

the pat tern of the confidence regions vary with the sample size, we report the 

result for sample size n = 100,1000 and 10000. While the empty set becomes less 

likely as the sample size increases from 100 to 1000, the same does not hold 

true when it further increases to 10000. This further shows that it is important 

to take into account the empty first-stage confidence region while designing the 

new projection-type score (K) test. 

Although our analytical results assume that the parameter space is com

pact, following the convention in linear IV regression the confidence regions 

in Tables 3.4 and 3.5 are expressed as unbounded. Even so, it is evident 

that whenever the instruments are strong for 92, i.e. in Wl-Cases II and IV, 

a bounded confidence region is more likely to occur, thus significantly reduc

ing the computational cost of the new test. The bounded regions are also more 

likely when the number of instruments is relatively large and/or when the sam

ple size is large. If the compactness assumption of the parameter space is re

laxed (of course by compensating for it with other assumptions) the confidence 

region should not be bounded with high probability whenever the instruments 

are weak for 62 [see Dufour (1997)]. 6 

The simulations in this section provide a comparative study of the finite-

sample behavior of the new projection-type tests with the existing tests in the 

literature. They corroborate the preceding analytical discussion of the useful

ness of the new test under both regular and non-regular conditions of inference. 

6 Our experience suggests that plotting the efficient K-statistic against different values of 62 

can be helpful in finding its minimum value. For the cases considered in this section, the 
efficient K-statistic seems to stabilize for distant values of the nuisance parameter 82 thus 
helping the search for the global infimum (with respect to the first-stage confidence region). 
Of course, it should be noted that finding the exact minimum is not absolutely necessary 
because the new test rejects the null hypothesis H\ : 0\ = 0«i if the efficient K-statistic 
exceeds the x2 critical value for any 92 belonging to the first-stage confidence region. 
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Wl-Case l :^ = 1,n2 = 1 W l - C a s e l l : ^ = 1 ,n 2 =10 

Wl-Case III: ^ = 10, n 2 = 1 Wl-CaselV:^ = 10, jx, = 10 

e«i " eoi 

AR w K — • — New Test (1% + 5%) 0 New Test (5% + 5%) • 5%-level 

Figure 3.1: Rejection rates for Hi : 0i = 0*i when n = 100, k = 2, pui = 0.5, 
P«2 = 0.5 and pu = 0. Weak instrument characterized by p = 1 and strong 
instrument by p = 10. 
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W l - C a s e l : ^ = 1,n2 = 1 W l - C a s e l l : ^ = 1, ̂  = 10 
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Wl-Case III: ̂  = 10, n 2=1 Wl-Case lV : ^ = 1 0 , ^ = 10 

AR • K — • — New Test (1 % + 5%) New Test (5% + 5%) • 5%-level 

Figure 3.2: Sample Size = 100, Number of Instruments = 2, puX = 0.1, pu2 = 0.99 
and pu = 0. Weak instrument characterized by p — 1 and strong instrument 
by p = 10. 
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Wl-Case l :^ = 1,ji2=1 Wl-Case II: |i1 = 1,n2 = 10 

Wl-Case III: ^ = 10, n = 1 Wl-CaselV:^ = 10, ji2= 10 

AR New Test ( 1 % + 5%) •—•— New Test (5% + 5%) — - — 5%-level 

Figure 3.3: Rejection rates for Hx : dx = 0„i when n = 100, k = 2, pul = 0.99, 
pU2 = 0.1 and pi2 = 0. Weak instrument characterized by /J, — 1 and strong 
instrument by /i = 10. 
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Wl-Case I: ^ = 1 , ^ = 1 Wl-Case II: ^ = 1, |x2= 10 

Wl-Case 111:^ = 10,(12=1 

6*1 " eoi 

Wl-Case IV: ( i ^ l O , ^ =10 

AR • New Test (1% +5%) • New Test (5% + 5%) • 5%-level 

Figure 3.4: Rejection rates for Hx : 91 = 9^ when n = 100, k = 4, pul — 0.5, 
pU2 = 0.5 and pu — 0. Weak instrument characterized by p — 1 and strong 
instrument by p = 10. 
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Figure 3.5: Rejection rates for Hx : Qx = Q*i when n = 100, k = 4, pul = 0.1, 
Pu2 = 0.99 and pi2 = 0. Weak instrument characterized by p. = 1 and strong 
instrument by /J, = 10. 
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Wl-Casel :n . = 1, jx„ = 1 W l - C a s e l l : ^ = 1,n2 = 10 

Wl -Case III: (j. = 10, jx2 = W l -Case lV : ^ = 10, ^ = 10 

AR »' K — • — New Test (1 % + 5%) New Test (5%+ 5%) 5%-level 

Figure 3.6: Rejection rates for Hi : 6\ = 0*i when n = 100, k = 4, pul = 0.99, 
pu2 = 0.1 and pu — 0. Weak instrument characterized by p = 1 and strong 
instrument by /̂  = 10. 
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Wl-Case I :R 1 = 1 , H 2
= 1 Wl-Case II: n1 = 1,n2 = 10 

Wl-Case III: n1 = 10, | i 2 = 1 Wl-Case IV: ̂  = 10, n 2 =10 

• AR M K — • — New Test (1 % + 5%) 0 New Test (5% + 5%) — — 5%-level 

Figure 3.7: Rejection rates for Hx : 9X = 0*i when n = 100, k = 20, pul = 0.5, 
pu2 — 0.5 and pu = 0. Weak instrument characterized by p = 1 and strong 
instrument by p = 10. 



www.manaraa.com

65 

o.e< 

0.5 

0.41 

0.3 

0.2 

0.1 

0 

W l - C a s e l : ^ = 1,n2 = 1 

5 0 ! 
6*1 " 901 

> 0.7< 

' 0.6 

0.5| 

0.4, 

0.3 

0.2 

0.1 

0 
5 - ! 

WI-Casell:M.1 = 1,H2 = 10 

JI A t 
jk y • 

r"****^ \ 1 lmi\_ 

M » 

« f 

¥ 

5 o e 
6 -1 - 9 01 

0.8 

0.6 

W l - C a s e l l l : ^ =10, n 2 = 1 

N y \ {\ 

Wl-CaselV:^ = 10, n2=10 

01 

AR New Test (1% + 5%) 0 New Test (5% + 5%) 5%-level! 

Figure 3.8: Rejection rates for Hi : 9X = 0*1 when n = 100, k = 20, pul = 0.1, 
Pu2 = 0.99 and pu = 0. Weak instrument characterized by p, = 1 and strong 
instrument by \i — 10. 
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W l - C a s e l : ^ = 1,p, = 1 W l - C a s e l l : ^ = 1,n2 = 10 

» » 0 

Wl-Case 111:^ = 1 0 , ^ = 1 W l -Case lV : ^ = 10,n2 =10 

<»•#••" AR New Test ( 1 % + 5%) 0 New Test (5% + 5%) — 5%-level 

Figure 3.9: Rejection rates for Hi : #i = 6^ when n = 100, k = 20, pul = 0.99, 
pu2 = 0.1 and pu = 0. Weak instrument characterized by p = 1 and strong 
instrument by p = 10. 
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Chapter 4 

CONCLUSION 

The score test relies on mild assumptions on the underlying model and often 

involves less computation than the Wald and LR tests. However, the asymptotic 

properties of the score test for subsets of parameters, in general, depend on the 

identifiability of both the parameters of interest and the nuisance parameters. 

The weak instrument setup is a common example where such identifiability 

restrictions are not satisfied and where the usual score test may be over-sized. 

Recent research has shown that variants of the score statistic can some

times be used to jointly test for all the parameters in the model. Dufour and 

his co-authors have also shown that the usual projection technique, based on 

the corresponding score statistic, can be used for testing subsets of parame

ters. However, such projection-based tests, although never over-sized, tend to 

be conservative. 

We proposed a new method of projection-type score test for subsets of pa

rameters. We showed tha t the new method is quite generally less conservative 

than the method of projection considered by Dufour and his co-authors. In fact, 

our test is locally optimal whenever local optimality can be attributed to the 

usual score test. At the same time, unlike the usual score test for subsets of 

parameters, it is also possible to impose a pre-specified upper bound to the size 

of our test even when the nuisance parameters are not identified. 

In this thesis we have described the successful application of our test to 

the weak instrument/identification framework. Further application to specific 

types of extremum estimation is a topic of our future research. 
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Appendix A 

PROOF OF RESULTS 

Lemma A.1 Let Mc c W be compact and let M = MC-Mb where Mb denotes the 

boundary ofMc. 

(i) Let an{9) - an{9) = op{l) and an{9) - a{9) = o(l) /or 0 e M. Then an{6„) -

a(0o) = op(l) ifa{9) is continuous at 90 and 9n — 90 = op(l). 

(ii) In addition, let bn{9) - bn{9) = op(l) and bn{9) - b{9) = o(l) for 6 e M. If 

a(0) ared 6(0) are bounded on M, then an{9n)bn(9n) —* a(0o)6(0o) i/"o(0) a^rf 

6(0) are continuous at 0O and 0n - 0O = op(l). 

The resultant convergence in probability is uniform if the convergence in 

probability and the continuity are uniform in the statement of Lemma A.l. 

Below is a rough sketch of the proof of Lemma A.l. 

(i) Using the Triangle Inequality, the results follow once we note that: (a) 

for n large enough 0n 6 jVw.p.a.l and ||on(0n)-a(0o)|| < ||an(0)-a„(0)|| + ||a„(0)-

a(0)|| + ||a(0)-a(0o)||. 

(ii) Let an{.) and a{.) be pa x p and bn{.) and b(.) be p x pb finite-

dimensional matrices. Defining Ia = {(i,j) : 1 < i < paA < J < p) a n a 

h = {{hi) • 1 < i < P, 1 < J < P&}, let sup max auj){9) < Ra = 0(1) 

and sup max buj){6) < Rb = 0(1). Then the results follow using 

the same technique as in (i) once we note that the Triangle Inequal

ity and the Cauchy-Schwartz Inequality give ||a„(0)6„(0) - a{9)b{9)\\ < 

||^(fi)-o(e)||||6n(^)-6(fl)|| + v ^ ^ l ^ l | | 6 n W - ^ ) l l + I I ^ W - a W l l v ^ l ^ l - I 
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In the following, for all the Mean-Value expansions of some functions of 9, 

the Mean-Value is genetically denoted by 9 (unless it is extremely confusing). 

This Mean-Value obviously is different for each expansion and also for any par

ticular expansion, the rows of this vector vary. We apologize for any confusion 

due to our notation. 

It will be helpful to prove the following lemmas before proving Theorem 2.1. 

These intermediate results are standard and similar proofs can be found in 

most graduate econometrics textbooks. Nevertheless, we provide all the proofs 

for the sake of completeness. 

Lemma A.2 Let 0»i = 0Oi + d\/y/n G Gi where d\ G R^1 is fixed. Under Assump

tions Al, A2 and A3, 

(i) 9n -» $0 and (ii) 9n2{9*i) —> 902. 

Proof: (i) Choose any e > 0 arbitrarily. Then with probability approaching one 

(w.p.a.l) we have: (a) n~lQn{On) > n-1(5n(#o) - e/3 (by definition), (b) Q(9n) > 

n_1Q„(0n) - e/3 (by Al) and (c) n-1Qn(50) > Q(0o) - e/3 (by Al) . Therefore, 

w.p.a.l, Q(9n) > n-lQn(9n) - e/3 > n-1Qn(0o) - 2e/3 > Q(90) - e. Since e > 0 was 

chosen arbitrarily, we have for any e > 0, Q(9n) > Q(90)—e w.p.a.l. Now consider 

any open neighborhood Af c G containing 90. Since J\fc n G is compact, by Al , 

we have swg>eeN-cn&Q{9) = Q{9^) < Q(90) for some 0t e Nc n Q. Now choosing 

e = Q(90) - supe€McrieQ(9), it follows that w.p.a.l, Q(9n) > supe€McneQ{9) and 

hence 9n G A/". Since A/" was chosen arbitrarily, it follows that 9n —> 9Q. 

(ii) Denote 6>* = (O'^d^)'- A second order Taylor series expansion gives 

-Qn(6.) = -QM + -VflQn(0„)(0. - 0o) + ^-(9* - Oo)'VeeQn(0){e* ~ BQ) ( A l ) 
Tl Tt Tl ATI 

for some 9 such tha t \\9 — 0O|| < ||0* — 90\\. Taking probability limits on both sides 
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of (A.1) and using A2 and A3, we get Q(0.) = Q(80) + §(#2 - e02)'A22(8)(82 - 0O2), 

meaning Q(0*) < Q(00) by the negative definiteness of A(8). Also 

by Al and (A.1) it follows that n_1Q„(#*) converges uniformly to 

Q(0*) — Q{0a) + 5(̂ 2 - ^02)̂ 22(0)(O2 - #02) which is continuous and has a 

unique maximum at 92 — #02- Hence consistency of 6n2(0*i) follows from the 

arguments in (i). | 

It follows from the proof of Lemma A.2 that 8n e interior(G) w.p.a.l; and 

for 6*1 G interiorOx), it follows that 9n2(8*i) £ interior(02). This, along with 

Assumption Al, implies that dQn{8n)jdB = 0 and <9Q„(6U, M0*i))/36»2 = 0. We 

use this argument implicitly by stating that "Assumption Al (combined with 

the definition of. . . )" in all the following derivations. 

Lemma A.3 Let 8^ = 801 + d\l\fn G 0 i where dx G W1 is fixed. Under Assump

tions Al, A2 and A3, 

(i) ^i{en-80)^-A-l[^%}'; 

(ii) v^(M#*i) - #02) -^ -A£ [A2idi + tt2]. 

Proof: (i) Lemma A.2 gives the consistency of 8n. Now, Assumption Al (com

bined with the definition of 8n) and a Mean-Value expansion of n'1/2^eQn(6n) 

give 

0 = -7=VoQB(0„) = — v9Q„(0o) + -VeeQn{0) n 

where 8 is such that \\8 - 0O|I < \\Qn — #o|| = op(l). Therefore, using Slutsky's 

Theorem and Assumptions A2 and A3 we get 

^{8n-80)^-A-^. 
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(ii) Again, as before Lemma A.2 gives the consistency of 0„2(0*i)- Define 

0* = (#*i> ̂ 2(0*1))'- Assumption Al (combined with the definition of 9n2(9*i)) 

and a Mean-Value expansion of n~1/2S72Qn(6*) give 

0 = 
1 

y/n 

1 

V2<2„(<?*) 

v2Q„(0o) + -v2iQ„(0(1)) di + -v 2 2 g n (^ ( 2 ) ) 
n 

v^(MM - M 

for some 9^ and #(2) such that for i = 1,2, \\9^ — 90\\ < \\9* — 90\\ = op(l). Hence 

as before in part (i) and using Assumptions A2 and A3, 

v^(M0.i) - M ^ -A£ [A2ldx + tt2]. I 

Lemma A.4 Let 9^ = 90i + di/^/n e ©j where di € R"' is fixed for i = 1,2. Define 

*i.2 = * i - ^ 1 2 ^ * 2 , #* = ( ^ i , ^ 2 ) ' <md 0* = ( ^ , ^ 2 ( ^ 1 ) ) ' . Lei 1(0) ^> A(0) 

ared £?(#) —> 5(0) for 0 e ©. Under Assumptions Al, A2 and A3, 

(i) Wi(0.i) - i [ ^ 2 * 1 . 2 + di] 'fin [ ^ 2 * 1 . 2 + di]; 

r»; ^ i (^ ) = i?aft(^) = Ralt2(e*) - i [^2*1.2 + ^ j X 1 [^2*1.2 + rfi]; 

(Hi) R^) = Rx(k) + op{\). 

Proof: (i) Lemma A.2 gives the consistency of 6n. Hence by the Continuous 

Mapping Theorem A(9n) —> A. Assumption A2 states that there exists an open 

neighborhood of 90 where B(9) is continuous. By consistency of 9n, it follows 

that for n large enough, 8n belongs to that neighborhood w.p.a.l and hence using 

the Continuous Mapping Theorem we get B(9n) —» B. Therefore by continuity 
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of matrix inversion, and Assumptions A2 and A3, we have fi(0„) —• A XBA l 

fi (say). Letting fin denote the top left v\ x v\ block of fi, it can be seen that 

fin = A^GBG'A^ where G = [l^,-A12A£] . 

It follows from Lemma A. 3 (i) that 

y/n(9nl - 0„i) = \fn{9nX - 0Oi) - V"(0*i - 901) 

• i - ^ 2 * i . 2 - dx ~ N(-du A^GBG'A^ = fin). 

Therefore, Wx(9^) A [ ^ 2 * i . 2 + di] fi^ [^2*1.2 + di] ~ x\ ( d ^ M ) 

(ii) i?i(0*) = i?alt(0*) = i?alt2(0*) by Assumption Al and the definition of 0„2(0*i)-

A Mean-Value expansion of n~1/2\7xQn(9*) gives 

viQ„(^) - -7=vig„(e0)+ 
n y/n n 

ViiQ„(e(i)) di+ 
n 

VuQn(0w) VZ(8«2(0.i)-9a2) 

for some 0(i) and 0(2) such that for i — 1,2, ||0(j) - 0o|| < ||0* — #o|| = op(l). Hence 

using Assumptions A2 and A3, and Lemma A.3 (ii) 

ViQn(0"„) - i ^ i + Aiidi-A12^2_21[-42idi + * 2 ] = *i.2 + -4ii.2di 

~ ^(An.adi, G£G' - An.2fiii^ii.2). 

As in part (i), it follows from the fact that 0* —> 90 and the Continuous 
- i + 

Mapping Theorem that \Gx{9^B{9st)G'(8^) ^ (GBG')'1 and hence 

Rx(l) = Ralt(9*) = Ralt2(l) ± [^^2*1.2 + d i ] ' ^ ! 1 [^2*1.2 + di] ~ X^ (difi^di) 

(iii) A Mean-Value expansion of n 1//2Ve<5n(0*), along with Assumptions A2 and 
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A3, gives 

y/n v n 
-VeeQn{0) n 

de 

for some 9 such that y/n\\9 - 90\\ < \/n\\9* - 90\\ = \/d'ede where dg = (d'1,d'2)'. 

Therefore, as before, noting that A(9*) —> A and B(9*) —> B, we get 

-7=V0Qn(^) A * +Ade, G(0*)5(0*)G'(0* (GBG')~ and 

-J=ViQn(0.) - A 1 2 (e , )^ 1 (^)4=V2Q n (e*) 

—> [^i + (Audi + Ai2d2)] — Ai2A22 [*2 + (^21^1 + - W 2 ) ] = #1.2 + ^11.2^1 

implying R^BJ = Rtf*) + op(l). | 

Proof of Theorem 2.1: (i) In the following, whenever we refer to 

mie,2£c2(i-C8i) Ri(9i,9*2), it is implied that C2(l - C. #i) is non-empty. The asymp

totic size of the new projection-type score test is 

lim Pr0ol { C 2 ( 1 - C , M = 0 } U { inf J R 1 ( 0 o l , ^ 2 ) > x ^ 1 ( l - e ) } 
s*2eC2(i—Cfioi) 

< 1 - lim Prg01 
n—>oo 

= 1 — lim Pr, 'e0i 

{0O2eC2(l-C,9ol)}n{ inf tfi^oi.M^CL-e)} 
9.2ec2(i-c,e0i) 

inf i2i(<9oi,6l.2) < x ^ ( l - e) | 002 G C2(l - C, 0oi) 
e.26C2(i-c,eoi) n—>oo 

x lim Pr0ol [ 902 e C2{\ - CAi)] 
n—>oo 

< 1 - lim Preo i [i2i(^oi, ^02) < X^(l - e)] l i m ^ 0 1 [ 902 G C2(l - C, 0, 
n—>oo n—>oo 

< i - ( i - c ) ( i - o 

01 

using respectively Lemma A.4(iii) and the condition of the Theorem. 
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(ii) By the condition of the Theorem, 

{C2(l-C,0*i) = 0 } U ( inf # i ( 0 * i , 0 * 2 ) > ^ ( l - e ) } 
0*2ec2(i-c,0*i) 

lim Pr6oi 
n—*oo 

lim Pr0oi [C2(l - C,0*i) = 0] + lim P r ^ 
n—»oo " — 

0 + lim Prem 

inf i ? i ( 0 * i , 0 * 2 ) > X ^ ( l - e ) 

P*2€C2(l-C>t'*l) 

Now note tha t it is also assumed tha t any 0*2 G C2(l — C>0*i) is in the \A^-

neighborhood of 0O2. Thus the value 02
nf(0*i), where the infimum of #i(0*i,02) 

is attained, is also in the v^-neighborhood of 0o2. Hence using Lemma A.4(iii), 

we get 

inf -Ri(0*i,0*2) = # 1 (0*1,0™ (0*i)) — #1(0*1,002) + ° p ( l ) , 
e.2€C2(i-c,«.i) 

implying that 

lim Pr0ol 
n—>oo 

= l i m Pr<?01 

{C2(l-C,0*i) = 0 } U { inf # 1 ( 0 * 1 , 0 * 2 ) > ^ 1 ( l - e ) } 
f*2€C2(l—C&.i) 

#i(0*i,0O2) >xl1{l-e)}. I 

Lemma A.5 LeZ 9ni = 0O, + di/y/n G 6 arcd Ze£ de := (di,d2)' suc/i £/m£ /or 

i = 1,2, dj G R"s is /weed. For i = 1,2, Ze£ L,(0) arad ^i.g be such that 

L(9) = [L[(9),L'2(9)}' and # v . s = [*'i.g,%.g]'. Define hTi{9) = E ? = i M 0 ) where 

hti(B) = \vecVigt(9) - Vig(9)V~1(9)gt(9)\ fori = 1,2. Under Assumptions M and 

W, 

n-^griOn) 

n-SlhT1{9n) 

Vg + TLiM^iiMiieoddi 

vecJi(0o) + (1 - l[*1=i]) [*i.fl + L1(90)de} 

VecJ2(90) + (1 - 1[S2=1]) [*2.fl + ^2(0o)d6»] 

Proof: Define FVv.fl(0) := V77(0) - VWg(9)V-q
1(9)VgV(9). Following the obvious 
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partition with respect to 0i and 62, let VVg = [V{g, V^'J', Vv.g = [V{g, V{g\ and for 

i = 1,2, let hTi{6) = E L i M * ) w h e r e M<?) == [uecVift(0) - ^ o ) ^ 1 ^ ) ^ ) ] . 

Letting /ir(0) = [H^i{0), h!T2(9))', Assumptions M and W give 

1 9T{6O) * 9 N 0, 
vg9(e0) o 

o v^.g(eQ) 
and hence 

-T^9T{B0) - i * 9 and for i = 1,2 ^ M * o ) ^ vecJi(80) + (1 - l [5 l=i])^.s. (A.2) 

A Mean-Value Expansion of -j^griOn) around 90 gives 

-^9T(0U) 
in 

9T{00) + -VegT(9)d9 n n 

for some 9 such tha t \\9 - 0O|| < \K - 0o|| = 0(1/y/n). Hence using (A.2) and 

Assumption W, we get 

1
 2 

^9T{9U) = * s + V l^^MiiOM + op{\). 
V n

 i = i 

Using Lemma A. 1 and the fact that continuity is preserved by matrix inver

sion, for i = 1,2, 

1 
71" 

hTi(6n) 

n 5 i 

vecVigT(en) - Vig(9n)Vg-\9n)gT(9n 

[vecyi9T{9n) - Vig{80)V-\80)gT{9n)\ + op(l) 

n< 
• M ^ n ) + <%>(!) 

for some 9 such that ||0—0o|| < ||#n—#o|| — 0(1/\/n) which follows from the Mean-

Value Expansion of hTi{9n) around 90. Hence Assumption M2 and Lemma A.l 
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and (A.2) give for i = 1,2, 

1 - 1 
j:hTi($n) = —/i„(0o) + (i - l[si=i])Li(60)de + op(l) 

^ vecJi(e0) + {l-l[si=1])[Vi.g + Li{6o)do] I 

Proof of Lemma 3.1: The following proof follows from Stock and Wright 

(2000) with negligible modifications. Noting that under Wl-Cases II and IV, 

(a) E±gT(9) = lp1=i]mi(0i) + l [ 4 l =i]^mn l(0) + m2(02) where mi(0i) -> mi(0Oi) 

for di —> 0oi and ro„i(0) —»• fhi(6) uniformly in 6 e 0, and 

(b) Vgg
1(0) —> V~g

l{9) uniformly where Vg~
1(9) is positive definite, continuous 

and bounded in 0 e 0, 

it follows from Assumption W that 

-Qn(o*i,o2) ^ m'2(e2)v-1(e01,e2)m2(e2) 
n MM 

uniformly in 02 € 62 . The right-hand side is zero iff 02 = #02 and hence continu

ity of the argmin operator gives 

0n2(0*l) —* 002- (A.3) 

Let 0* = (0^, 0;2(0*i))' and 0*o = (^1,0o2)'- By definition of CUE 0n2(0*1), 

0 > Qn(0*) - Qn(6*0) 
"V05T(0), 

\fn 
-(0* — 0o) Ko1^*) 

Ve9r(B) ^ 

n 
-0o ) + A In 

+2 V 8 9 T W ( * . - « , ) 
n 

0 - 1 / 2 \gr(^o) (A.4) 
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where the mean-value 0 e 0 is such that ||0 - 0O|| < II0* - 0oll = op(l) and 

A l n = ^ 5 T ( ^ O ) ^ 1 ( 0 * ) 4 = 5 T ( ^ O ) - -^5r(^o)t / ; 1(0*o)4=^(0*o). 
V« v n v n v n 

For notational convenience let us define M = .M(0*,0,0O) := 7 a ^ ( e ) (0* - 0o) 

and let mineval(A) denote the minimum eigen-value of the matrix A. Note that, 

(i) M'V-\k)M > ||7W||2mineval ( v ^ * ) ) 

(ii) M'Vg-\l)
9-^- > -\\M\\ vq-\l)

9T{9o) 
y/n 

(by the CS Inequality). 

Define A2„ = 
\f-l(ft \9T{8Q) V99 \a*) sfr 

mineval (WW) 
and A3n = 

Al„ 

mineval 

dividing (A.4) by mineval (Vgg
l(0*) J, we get, 

(V(0*)) 
. Therefore, 

| | X | | 2 - 2 | | M | | A 2 n + A 3 „ < 0 

which implies tha t A2n - y/A\n - A3n < \\M\\ < A2n + yJA2
2n - A3„. 

Noting that ||0 - 0O|| = o(l), Assumptions M l and W give -V;g-T(0) 

l[ii=i]Mi(0oj) for i = 1,2. Since ||di|| = 0(1), it is clear that y/n (0„2(0*i) - 6*02) 

Op(l) if A2n and A3„ are Op(l). Under Assumption M, 

A2„ < 
sup,? K O 1 ( % T ( 0 O ) / V / ^ d s u p J l K - 1 ^ ) * 99 y"J*9\ = 0P(1). (A.5) 
inf0 mineval (vg-g

l(0)) i n f* mineval (V-^B)) 

Again, noting that , for some 0W = (0[,9'02y such that ||0iO — 0o|| < ||0*o 
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0(1/y/n), i.e. for some Bx = 0oi + $ j where ||di|| < | |cy = 0(1), 

In 

—7=~Vgg \d*)—7=~ 

9TW 

9T(9O) , VIST(0IO)T 
— 7 = - H " l 

n 
^M PT(#O) . VI9T(9W)J 

—7=- H «l 
n 

n 
v-Hej-v-^o) 

9T(QO) 

n 
+ 2 arWo-us^ifrfiw) 

n 
vq-\e*) 

n 
rfi 

+ 
r, Vi3r(^io)r/-i/2 x Vi^r(^io) j 
i „ 'gg V„W di 

n 

2 x i[,1=1] [|*sys-
1(e0)M1(^i)d1| + \d'1M[(e01)vgg

1(e0)M1(e01)d1\} = op( i ) 

follows from Assumptions M and W. Again, since V~g
1(6) is positive definite, 

similar arguments as in (A.5) give |A3„| = Op(l). 

Therefore, V ^ I I M M - M = 0P{1). | 

^ 1 ' 

Proof of Lemma 3.2: Define Ani — Vgg
2 (9T)DTi(8n) for i — 1,2. It follows from 

Lemma A.5 that ^ - ^ n i -i. Vfl7 (0„) [Ji(0o) + (1 - l[5i=i})deveck [%.g + Li(8o)d0}] 

and 

n (A'nlN(An2)Anly> A'nlN(An2)Vg7 {9n)gT{dn) 

- i (A'1iV(A2)A1)"^ A;iV(A2)B, 

^ « 2 A „ 2 p ' A'n2Vg7 (8n)gT(9n) - i (A ' 2 A 2 p ' A'2B, and 

4=^/(0™)0r(0n)^ 
/n 

(A.6) 

(A.7) 

(A.8) 

Lemma 3.2 follows directly from (A.6), (A.7) and (A.8). | 

Proof of Theorem 3.3: (i) From Lemma 3.2, it is clear that C2(l — (, 601) is a 

1 — C joint confidence region for 02 when 61 is known a priori to be 901, and hence 

it contains 802 with probability 1 - (. Using the same strategy as in the proof of 
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Theorem 2.1, we have 

C92(1-(,9O1) = 0, inf Knl(60i,8«2)>xil(l-e) 
e,2ec2(i-Cfioi) 

C {002 i C2(l - C M . Knl(e01,eo2) > x ^ ( l - e)} • 

Hence noting that Lemma 3.2 gives Kni(90) —> x^ , standard Bonferroni argu

ments give the asymptotic size to be at most e + C 

(ii) Lemma 3.2 implies that in Wl-Cases II and IV, C2(l — e, 0*i) is contained 

in the ^-ne ighborhood of 0O2 w.p.a.l under the conditions of the Theorem. 

Hence 02
nf(0*i), where the infimum inf^2Gc2(i-CAi) -Kni(0*ii0*2) is attained, is 

also in the v^n-neighborhood of 0O2- Hence Lemma 3.2 directly applies and 

gives the asymptotic equivalence of the tests. | 

LemmaA.6 Let 0* = (0*i,0^,2(0*i))' where 0n2(0*i) is such that V2Qn(0*) = 0 for 

0*i £ ©i- Then under Assumptions M and W, 

Pra inf Kn{0.1,O.2)>xl(l-e) 
»2£©2 

<Po, i ^ i (0*1 , M 0 * i ) ) > x £ ( i - e ) 

Proof: The result follows once we note that 

Pr, 001 inf #„(#*i A2) > X*(l - e) 
7*2662 

< Pre01 

= Pre0l 

< Pre01 

'^(0*1,^2(0*1)) > x S ( l - < 0 

# „ i ( 0 . i , M 0 . i ) ) > x ' ( l - e ) 

" # » I ( 0 . I , M M ) > x ' 1 ( l - e 
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